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Abstract

This research study examines the relationship between Artificial Intelligence (AI) 
adoption and Circular Material Use Rate across 27 EU member states (2021-2023). 
Using panel data econometrics and Random Forest machine learning, it analyzes the 
direct and non-linear effects of AI adoption on circular economy outcomes. Results 
show no statistically significant direct impact of AI on circular material use rate 
(CMUSE) when controlling for economic factors. Resource Productivity emerges 
as the strongest predictor, with GDP per capita playing a crucial moderating role. 
The Random Forest model explains 48.58% of CMUSE variance. The study provides 
evidence that AI investments should align with initiatives of increasement of resource 
efficiency and with economic development policies. The findings emphasize the need 
for tailored interventions considering technological readiness and economic capacity 
variations across EU states, contributing to sustainable development policy design.
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УСВАЈАЊЕ ВЕШТАЧКЕ ИНТЕЛИГЕНЦИЈЕ И ЊЕН 
УТИЦАЈ НА ЦИРКУЛАРНУ УПОТРЕБУ МАТЕРИЈАЛА: 

АНАЛИЗА ЗЕМАЉА ЕУ  
Апстракт

Овај рад анализира однос вештачке интелигенције и стопе циркуларне 
употребе материјала у 27 држава ЕУ (2021-2023). Комбинованим приступом 
економетрије панел података и Random Forest машинског учења, истражени су 
директни и нелинеарни ефекти вештачке интелигенције на резултате циркуларне 
економије. Резултати овог истраживања показују да вештачка интелигенција 
нема статистички значајан утицај на стопу циркуларне употребе материјала 
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(CMUSE) при контроли економских фактора. Продуктивност (ефикасност) 
ресурса је најзначајнији предиктор, док бруто домаћи производ по глави 
становника има кључну модераторску улогу. Random Forest модел објашњава 
48,58% варијансе CMUSE. Ово истраживање је показало да улагања у вештачку 
интелигенцију треба ускладити са иницијативама за повећање ефикасности 
ресурса и са политикама привредног развоја, наглашавајући потребу за 
прилагођеним интервенцијама које узимају у обзир технолошку спремност и 
економске капацитете држава чланица ЕУ. 

Кључне речи: вештачка интелигенција, циркуларна економија, стопа 
циркуларне употребе материјала, Европска унија, продуктивност ресурса, 
одрживи развој 

1. Introduction

Due to resource limitations and environmental devastation, the 21st century has brought 
forth the dual imperatives of technological transformation and environmental sustainability 
as defining priorities for modern economies. These challenges are particularly prominent 
within the European Union (EU), which has positioned itself as a global leader in addressing 
sustainability concerns, with particular emphasis on resource scarcity and energy efficiency 
and driving the digitalization of industries. The circular economy (CE) has emerged as a 
comprehensive framework to mitigate resource depletion and environmental degradation and 
devastation. At its core, the CE shifts from the dominant, linear “take-make-dispose” model 
to regenerative systems that prioritize resource efficiency, waste minimization, and material 
recovery (Geissdoerfer et al., 2017; Kirchherr et al., 2017). By integrating practices such 
as sustainable product design, reuse, recycling, and recovery, CE aligns economic growth 
with ecological resilience, representing a cornerstone of the EU’s strategy for sustainable 
development (Ghisellini et al., 2016; MacArthur, 2013).

Simultaneously, artificial intelligence (AI) has evolved as a transformative force in 
contemporary business, and the speed of its development has forced policymakers, especially 
in the EU, to adapt fast. AI’s capabilities in real-time data processing, predictive analytics, 
and optimization have enabled innovative solutions across critical sectors, including 
manufacturing, logistics, and energy management (Jabbour et al., 2022; Lasi et al., 2014). 
Its potential to enhance CE practices is profound and foundationally transformative. 
Machine learning algorithms can optimize resource flows (Ghisellini et al., 2016), predictive 
maintenance systems extend product lifespans (Frank et al., 2019), and advanced robotics 
improve recycling and waste management (Ramos et al., 2019; Roberts et al., 2022). This 
synergy between CE and AI creates unprecedented opportunities to address sustainability 
challenges while fostering economic competitiveness (Wautelet, 2020).

The EU’s leadership in CE and digital transformation emphasizes the urgency of 
understanding how these domains intersect. Policies such as the European Green Deal and 
the Circular Economy Action Plan (CEAP) set ambitious targets, including increasing the 
EU’s circular material use rate (CMUSE) from 11.7% in 2020 to 25% by 2030 (European 
Commission, 2020a; Eurostat, 2023). Simultaneously, the Coordinated Plan on AI and 
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the proposed AI Act emphasize ethical and widespread AI adoption to enhance economic 
and environmental resilience (European Commission, 2020b). These overlapping policy 
priorities highlight the strategic importance of understanding how AI adoption can bolster 
CE outcomes, providing a timely context for this research.

However, despite the theoretical promise of AI in advancing CE practices, its empirical 
impacts remain underexplored, particularly at the macroeconomic level. While case studies 
and sectoral analyses have demonstrated AI’s role in improving resource productivity and 
enabling circular business models (Popović & Milijić, 2021; Tutore et al., 2024), systematic 
cross-country evidence is scarce. Popović (2020) notes that research on the implications of 
Industry 4.0 technologies, including AI, often neglects their potential to achieve sustainable 
development outcomes like those tied to CE. This gap is particularly pronounced in the EU, 
where variations in technological readiness, economic development, and industrial structure 
may influence the effectiveness of AI in promoting CE outcomes. Moreover, the relationship 
between AI adoption and CMUSE may not be linear, with diminishing returns or threshold 
effects at higher levels of AI implementation (Platon et al., 2024). Without strong empirical 
evidence, policymakers and business leaders face uncertainties in leveraging AI to meet CE 
objectives.

Understanding the interplay between AI adoption and CMUSE is essential for 
advancing both academic inquiry and policy design. Insights into this relationship can 
support policymakers in aligning the EU’s digital transformation and environmental 
sustainability agendas. Programs like NextGenerationEU, which allocates €723.8 billion for 
green and digital transitions, and Horizon Europe, with a €95.5 billion budget for research 
and innovation, underscore the importance of evidence-based strategies to maximize the 
impact of these investments (European Commission, 2021c, 2021d). Popović et al. (2023) 
emphasize that tailored policies accounting for national contexts - such as disparities in 
technological infrastructure and economic capacity - are crucial for achieving CE targets. For 
business leaders, identifying how AI can enhance CE practices offers pathways to operational 
efficiency and competitive advantage.

This research contributes to bridging these gaps by providing macroeconomic-level 
evidence on the relationship between AI adoption and CMUSE. By focusing on the EU - 
a global leader in CE and AI adoption - this study contributes to broader discussions on 
sustainable technological innovation. Moreover, exploring non-linearities and contextual 
moderating factors enriches the theoretical understanding of how digital and environmental 
transitions intersect.

The primary goal of this research is to investigate the relationship between AI adoption 
and CMUSE across EU member states. Four specific objectives support this aim:

1.	 Quantifying the causal impact of AI adoption on CMUSE.
2.	 Identifying potential non-linear relationships and threshold effects.
3.	 Analyzing how economic development and technological readiness moderate 

this relationship.
4.	 Developing evidence-based policy recommendations to enhance CE outcomes 

through AI adoption.

The study addresses the following research questions:
1.	How does AI adoption influence circular material use (CMUSE) in EU member 

states?
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2.	What is the nature of this relationship - linear, non-linear, or threshold-based?
3.	How do economic development and technological readiness affect this relationship?

This research employs a mixed-method quantitative approach, integrating panel 
data econometrics with machine learning techniques to explore the relationship between 
AI adoption and CMUSE. Using data from 27 EU member states for 2021 and 2023, the 
analysis captures a pivotal period in the region’s digital and circular transitions. Fixed-effects 
regression models address unobserved heterogeneity among countries and enable causal 
estimation while controlling for factors such as GDP per capita, resource productivity, and 
industrial value-added. Additionally, quadratic terms test for potential non-linearities, such as 
threshold effects or diminishing returns from AI adoption (Platon et al., 2024).

Machine learning complements the econometric analysis by validating results and 
uncovering complex interactions. Random forest models evaluate variable importance and 
identify nuanced patterns, providing insights that traditional regression methods might 
overlook (Breiman, 2001). Partial dependence plots further illustrate the interplay between 
AI adoption and contextual factors, revealing heterogeneity in impacts across member states. 
This hybrid approach addresses limitations in prior studies, such as endogeneity concerns and 
the inability to model non-linear effects (Acerbi et al., 2021).

By integrating econometrics and machine learning, this research advances 
understanding of the magnitude and nature of AI’s influence on CMUSE. The findings align 
with crucial EU policy frameworks, such as the European Green Deal and CEAP, offering 
actionable insights for tailoring strategies to enhance the EU’s dual transitions in sustainability 
and digitalization.

The remainder of this paper is organized to initially review the relevant literature on 
AI and CE, emphasizing existing gaps and outlining the methodological framework, data 
sources, and variable selection. Further, it presents empirical findings, including econometric 
results and machine learning validation, and discusses the implications for policy and 
practice. Finally, it concludes with key insights and future research directions.

This research makes several contributions to academic literature and policy discussions. 
First, it provides novel empirical evidence on the relationship between AI adoption and 
CE outcomes at a macroeconomic level, addressing a critical gap in existing research. 
Second, it introduces a hybrid methodological approach that combines econometric analysis 
with machine learning, offering a robust framework for policy analysis. Third, it delivers 
actionable insights for policymakers and business leaders, aligning with the EU’s strategic 
goals for digital transformation and environmental sustainability. By bridging theoretical 
understanding and practical application, this research advances the discourse on leveraging 
AI for sustainable development.

2. Theoretical Background

The integration of circular economy (CE) principles with technological innovation, 
particularly artificial intelligence (AI), has emerged as a focal point in contemporary 
discussions on sustainable development. The resource-based view (RBV) and the dynamic 
capabilities framework provide foundational theories for understanding how organizations 
can leverage resources and competencies to respond to environmental challenges through 
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resource optimization and technological advancements (Barney, 1991; Teece et al., 1997). 
Haas et al. (2015) highlight the inefficiencies of the global linear economic model, noting 
that out of 62 gigatons (Gt) of processed materials, only 4 Gt are recycled annually. This 
significant disparity underscores the urgent need for a fundamental shift toward circular 
material flows, aligning with Kirchherr et al. (2017), who emphasize the centrality of CE 
principles - recycling, reuse, and remanufacturing - in addressing resource scarcity and 
mitigating environmental degradation and devastation. Figure 1 illustrates the dimensions of 
the circular economy.

Figure 1: Dimensions of Circular Economy

Source: Author’s illustration based on Kirchherr et al. (2017)

Aleksić et al. (2023) extend this perspective by linking sustainable product lifecycle 
strategies to CE principles. Their study demonstrates that compliance with CE frameworks not 
only fosters environmental benefits but also enhances profitability. By adopting sustainable 
design and adhering to CE principles, companies can reduce resource consumption and 
waste generation, thereby improving their overall economic performance. This integration of 
theoretical foundations with practical applications emphasizes the imperative for technological 
innovations, such as AI, to facilitate the transition from linear to circular economic systems.

Digital transformation plays a pivotal role in enabling CE practices by leveraging 
technological solutions to close resource loops, optimize supply chains, and monitor material 
flows. Technologies such as the Internet of Things (IoT), blockchain, and advanced analytics 
are instrumental in this domain. Popović et al. (2022) highlight the transformative potential of 
digital platforms in fostering circular business models like product-as-a-service and extended 
producer responsibility. These models promote resource efficiency and accountability across 
value chains, which are essential components in achieving CE goals.

However, the interplay between digital transformation and circularity is complex and 
often non-linear. Nham and Ha (2022) suggest that while digital technologies offer benefits 
like precision tracking of materials and enhanced resource recovery, these advantages may 
diminish beyond a certain threshold. This non-linear dynamic indicates the necessity of 
aligning technological interventions with strategic policy frameworks to ensure sustained 
progress toward CE objectives.
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In specific industry contexts, Radukić et al. (2023) provide a case study on the textile 
industry, focusing on H&M’s transition toward circularity. Their analysis reveals significant 
reductions in waste and improvements in operational efficiency through the adoption of 
digital technologies and CE principles. However, they also highlight the challenges faced by 
smaller firms and those in resource-limited economies, emphasizing the need for supportive 
policies and access to technological resources to facilitate broader adoption.

Artificial intelligence has emerged as a transformative enabler in advancing CE 
practices, offering capabilities in real-time decision-making, predictive analytics, and process 
optimization. Tutore et al. (2024) propose a four-stage framework for AI integration into 
CE actions: system optimization, system redesign, business model redesign, and ecosystem 
innovation. This framework, presented in Figure 2 illustrates the diverse applications of AI, 
from improving resource efficiency at the operational level to fostering innovation across 
entire ecosystems.

Figure 2: AI Integration Framework

Source: Author’s illustration based on Tutore et al. (2024)

Platon et al. (2024) emphasize the substantial positive impact of AI on CE development, 
particularly when combined with eco-investments. Their panel regression analysis across 27 
EU member states demonstrates that while eco-investment has a greater impact, AI adoption 
significantly contributes to the advancement of CE outcomes. However, they also note that 
the extent of this impact varies by industry, organizational maturity, and national policy 
frameworks.

Similarly, Ghoreishi and Happonen (2020) explore AI’s role in sustainable product 
design, emphasizing how advanced analytics and real-time data can enhance circular 
manufacturing processes. Their qualitative study suggests that integrating AI techniques in 
the product design phase leads to improved sustainability and cost savings, although they 
acknowledge limitations due to the lack of empirical validation.
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Despite these promising findings, challenges to AI adoption persist. Cubric (2020) 
identifies barriers such as data availability, trust issues, and the lack of technical expertise 
as significant impediments to broader AI implementation. Kelley (2022) further highlights 
organizational factors, including communication, management support, and ethical 
considerations, as critical to the successful adoption of AI-driven CE practices.

The European Union (EU) is recognized as a global leader in advancing CE principles, 
particularly through its focus on circular material use rate (CMUSE). Defined as the percentage 
of recovered materials reintegrated into the economy, CMUSE serves as a vital indicator of 
progress toward circularity. According to Eurostat (2023), the EU-wide CMUSE rate was 
11.7% in 2020, but this aggregate figure masks significant disparities among member states. 
Nations with advanced industrial structures and comprehensive policy frameworks, such as 
Germany and the Netherlands, exhibit higher CMUSE rates, while countries in Eastern and 
Southern Europe lag due to weaker institutional capacities and technological infrastructure 
(Popović & Milijić, 2021).

The Circular Economy Action Plan (CEAP), part of the European Green Deal, outlines 
ambitious goals to increase the CMUSE rate to 25% by 2030 (European Commission, 
2020a). Achieving these targets requires innovative approaches, including the adoption of 
AI, to accelerate the transition to a circular economy. Popović et al. (2023) emphasize that 
overcoming structural barriers - such as inefficient waste management systems, limited 
cross-sector collaboration, and uneven technological diffusion - is critical for realizing these 
objectives.

The application of AI in CE practices has evolved from theoretical explorations 
to broader implementations across various industries. AI technologies contribute to CE 
objectives through several mechanisms:

1.	 Enhanced Waste Sorting: Machine learning and computer vision technologies 
enable precise identification and separation of waste materials, significantly 
improving recycling rates. Agrawal et al. (2021) discuss how AI-powered 
systems can classify materials with greater accuracy and speed than traditional 
methods, reducing contamination and enhancing the quality of recycled outputs.

2.	 Predictive Maintenance: AI-driven predictive analytics prolong the lifecycle of 
products and machinery by identifying potential failures before they occur. Acerbi 
et al. (2021) emphasize the transformative impact of predictive maintenance on 
reducing material consumption, particularly in manufacturing and logistics sectors.

3.	 Supply Chain Optimization: Advanced AI algorithms optimize supply chains by 
minimizing waste, reducing transportation inefficiencies, and aligning production 
with demand. Ramos et al. (2018) highlight AI’s potential to lower environmental 
footprints by improving resource allocation and enabling real-time adjustments 
to supply chain dynamics.

However, scalability challenges persist. While AI has demonstrated significant success 
at the micro-level (individual firms), its integration at the meso-level (industry networks) 
and macro-level (regional or national economies) is often limited by regulatory hurdles, 
infrastructure gaps, and varying levels of technological readiness (Acerbi et al., 2021; Popović 
et al., 2023). Acerbi et al. (2021) note that the exploitation of AI in circular manufacturing is 
more advanced at the micro-level compared to meso- and macro-levels, suggesting the need 
for coordinated efforts to scale AI applications across sectors and regions.
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The efficacy of AI in advancing CMUSE is heavily influenced by economic 
development and institutional quality within EU member states. Wealthier countries with 
developed institutional frameworks are better positioned to leverage AI technologies for CE 
objectives. For example:

•	 Economic Development: Advanced economies like Germany and Sweden have 
the financial resources and technological infrastructure to invest in AI innovation, 
enabling more effective implementation of circular strategies (Platon et al., 2024; 
Popović et al., 2022).

•	 Institutional Quality: Institutional frameworks that promote collaboration 
between government, academia, and industry foster environments conducive to 
AI adoption. Popović et al. (2023) highlight that countries with strong governance 
and clear CE policies achieve higher rates of technology-driven circularity.

Conversely, less-developed regions face significant barriers, including inadequate 
infrastructure, limited financial resources, and fragmented policy support. These challenges 
exacerbate disparities in CMUSE and hinder AI’s potential to contribute meaningfully to 
circular transitions across the EU (Popović & Milijić, 2021). Addressing these disparities 
requires tailored policy interventions that consider the unique economic and institutional 
contexts of each member state.

Despite the growing body of literature on AI and CE, notable research gaps persist:
1.	 Macro-Level Analysis of AI and CMUSE: Current studies predominantly 

focus on micro-level (firm-specific) or sectoral analyses, neglecting broader 
macroeconomic dynamics. Popović et al. (2023) underscore the need for cross-
country studies that consider the influence of AI adoption on national CMUSE 
rates, particularly within diverse institutional and economic conditions.

2.	 Non-Linear Dynamics and Threshold Effects: The relationship between AI 
adoption and CMUSE may exhibit non-linear characteristics, such as diminishing 
returns or threshold effects. Nham and Ha (2022) suggest that beyond a certain 
level of digital technology adoption, the incremental benefits to circularity may 
decrease, indicating the importance of identifying optimal levels of AI integration.

3.	 Technological Readiness and Policy Alignment: Platon et al. (2024) emphasize 
that technological readiness must be complemented by policy frameworks that 
encourage sustainable AI adoption. Without such alignment, AI’s potential to 
drive CE objectives remains underutilized.

These research gaps inform the methodological choices of this paper. By employing 
a mixed-method quantitative approach that combines econometric modeling with machine 
learning validation, this research addresses the limitations of prior studies. Econometric 
analysis allows for hypothesis testing and estimation of causal relationships, while machine 
learning techniques capture complex, non-linear interactions and provide robustness checks 
(Athey & Imbens, 2019). This methodological triangulation enhances the reliability of 
findings and offers a comprehensive understanding of how AI adoption influences CMUSE 
across diverse EU contexts.

The scalability of AI applications and their implications for CMUSE across diverse EU 
contexts are critical considerations. The mixed-method approach enables the examination of 
both direct effects and detailed interactions between AI adoption and CMUSE. By analyzing 
data from all 27 EU member states over multiple years, the research captures variations in 
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economic development, technological readiness, and institutional quality. This comprehensive 
analysis addresses the scalability challenge by identifying patterns and relationships that are 
generalizable across different contexts.

Moreover, the incorporation of non-linear models and machine learning algorithms 
allows for the detection of threshold effects and diminishing returns, providing insights into 
optimal levels of AI adoption for maximizing CMUSE. This is particularly important for 
policymakers aiming to design interventions that are both effective and efficient.

The literature underscores the transformative potential of AI in advancing CE 
objectives, particularly in enhancing CMUSE. However, the realization of this potential 
is contingent upon various factors, including economic development, institutional quality, 
and strategic policy alignment. The identified research gaps highlight the need for macro-
level analyses that consider the complex, non-linear relationships between AI adoption 
and CMUSE. By addressing these gaps through a robust methodological framework, the 
present study aims to contribute to both academic discourse and practical policy solutions in 
promoting sustainable development within the EU. 

3. Research Methodology

This research employs a mixed-method quantitative approach to investigate the 
relationship between Artificial Intelligence (AI) adoption and the Circular Material Use Rate 
(CMUSE) across the 27 European Union (EU) member states. By integrating traditional 
econometric techniques with advanced machine learning methods - specifically, panel data 
econometrics and Random Forest regression – this paper aims to capture both linear and 
non-linear dynamics in this relationship. This methodological triangulation addresses the 
limitations of prior studies that often rely solely on linear models or lack robustness checks 
for complex interactions (Acerbi et al., 2021; Nham & Ha, 2022).

3.1. Data Sources and Sample Selection
The analysis utilizes a balanced panel dataset covering all 27 EU member states over 

two pivotal years: 2021 and 2023. This period coincides with significant developments in 
the EU’s digital transformation and circular economy initiatives, such as the implementation 
of the European Green Deal and the Circular Economy Action Plan (CEAP) (European 
Commission, 2020a). By focusing on this timeframe, the research aims to capture the 
contemporary dynamics between AI adoption and circular economy outcomes.

The data is sourced from authoritative and harmonized databases to ensure consistency 
and comparability:

•	 Eurostat: Provides data on CMUSE, Resource Productivity (RESP), and other 
circular economy indicators (Eurostat, 2023). Specifically, variables such as 
Waste Generation per Capita (WASTPC), and Recycling Rates are included.

•	 European Commission’s Surveys: Supplies information on AI adoption rates 
and digital technology usage, including E-commerce Sales (ECOMS), Cloud 
Computing Services (CCOMP), and Use of Robotics (ROBOTICS), based on 
harmonized EU-wide enterprise surveys (European Commission, 2022).

•	 World Bank and OECD Databases: Provide supplementary macroeconomic data 
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such as GDP per Capita (GDPpc), Unemployment Rates (UNEMP), Industrial 
Value Added (INDVA), and Renewable Energy Consumption (RENWENG) for 
validation and robustness checks.

By concentrating on the EU context, this paper controls for overarching policy 
frameworks and institutional settings, thereby addressing scalability challenges and ensuring 
that variations in the data are attributable to differences in national characteristics rather than 
global disparities (Popović et al., 2023).

3.2. Variables and Operationalization
Dependent Variable: Circular Material Use Rate (CMUSE) measures the share of 

material recycled and reintroduced into the economy, thus reducing the need for extracting 
primary raw materials. It is defined as the ratio of the circular use of materials to the overall 
material use and is expressed as a percentage (%) (Eurostat, 2023).

Independent Variable: Artificial Intelligence Adoption Rate (AI) represented by the 
percentage of enterprises employing at least one AI technology, such as machine learning, 
natural language processing, or computer vision. This data is collected from enterprises with 
10 or more employees across various sectors, excluding agriculture, forestry, fishing, and 
mining (European Commission, 2022).

Control Variables: To account for country-specific characteristics and potential 
confounding factors, several control variables are included:

•	 E-commerce Sales (ECOMS): Percentage of enterprises making sales via 
e-commerce, serving as a proxy for digital infrastructure and technological 
readiness (Eurostat, 2023).

•	 Cloud Computing Services (CCOMP): Percentage of enterprises buying cloud 
computing services used over the Internet, indicating the level of digital adoption 
(European Commission, 2022).

•	 Resource Productivity (RESP): Calculated as gross domestic product (GDP) 
divided by domestic material consumption (DMC), expressed in Euro per kilogram. 
This variable captures the efficiency of resource utilization (Eurostat, 2023).

•	 Industrial Value Added (INDVA): Represents the contribution of the industrial 
sector (including construction) to GDP, expressed as a percentage (%). It controls 
for structural economic differences across countries (World Bank, 2024).

•	 GDP per Capita (GDPpc): Gross domestic product divided by midyear 
population, measured in current U.S. dollars. It accounts for the level of economic 
development (World Bank, 2024).

•	 Renewable Energy Consumption (RENWENG): The share of renewable energy 
in total final energy consumption, expressed as a percentage (%). It reflects a 
country’s commitment to sustainable energy practices (World Bank, 2024).

Additional Variables: For robustness checks and supplementary analysis, the analysis 
includes:

•	 Waste Generation per Capita (WASTPC): Total waste generated per capita, 
including major mineral wastes, measured in kilograms (Eurostat, 2023).

•	 Recycling Rates: Including Recycling Rate of Municipal Waste (RECMWASTE) 
and Recycling Rate of Electronic Waste (RECREW), expressed as percentages 
(%), to assess specific aspects of waste management efficiency.
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•	 Unemployment Rate (UNEMP): The share of the labor force without work but 
available for and seeking employment, expressed as a percentage (%). This 
variable controls for labor market conditions (World Bank, 2024).

All variables are carefully operationalized and standardized where appropriate to 
ensure comparability and to mitigate issues of scale and multicollinearity (Wooldridge, 2010).

3.3. Data Preparation and Processing
Data was collected from the respective databases to ensure the most recent and relevant 

information was utilized. Each variable is matched with its short definition, date of collection, 
and source link for transparency and reproducibility.

The dataset is structured as a balanced panel (Croissant & Millo, 2008), with countries 
as individual units and years as time periods. This structure allows us to control for unobserved 
heterogeneity and capture both cross-sectional and temporal variations.

Variable Transformation:
•	 Standardization: Continuous variables are standardized using z-scores to address 

scale differences and facilitate the interpretation of coefficients.
•	 Log Transformation: The natural logarithm of GDP per capita (lgdp) is taken to 

linearize the relationship and reduce heteroscedasticity.
•	 Composite Indices: Where appropriate, composite indices are created using 

Principal Component Analysis (PCA) to capture underlying constructs such as 
technological readiness or environmental sustainability.

All analyses are conducted using R statistical software version 4.4.0 (R Core Team, 
2024), utilizing packages such as plm for panel data econometrics (Croissant & Millo, 2008), 
randomForest for machine learning models (Liaw & Wiener, 2002), and ggplot2 for data 
visualization (Wickham, 2016). The use of R ensures transparency, reproducibility, and 
accessibility. 

3.4. Empirical Strategy and Model Specifications

Stage 1 -  Linear Panel Data Analysis: The analysis begins with a fixed-effects panel 
regression model to estimate the direct relationship between AI adoption and CMUSE:

CMUSE_stdit = β1AI_stdit + β2lgdpit + β3RESP_stdit + β4INDVA_stdit + αi + ϵi                                     (1) 

•	 CMUSE_stdit​: Standardized Circular Material Use Rate for country iii at time ttt.
•	 AI_stdit: Standardized AI Adoption Rate.
•	 Lgdpit: Natural logarithm of GDP per capita.
•	 RESP_stdit: Standardized Resource Productivity.
•	 INDVA_stdit​: Standardized Industrial Value Added.
•	 αi\alpha_iαi​: Country-specific fixed effects.
•	 ϵit​: Error term.

The fixed-effects model accounts for unobserved heterogeneity by allowing each 
country to have its own intercept, thus controlling for time-invariant characteristics (Baltagi, 
2008).
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Stage 2 - Non-linear Relationship Analysis: To explore potential non-linearities and 
threshold effects, the analysis extends the model by including a quadratic term for AI adoption:

CMUSE_stdit = β1AI_stdit + β2AI_std2
it + β3lgdpit + β4RESP_stdit + β5INDVA_stdit + αi + ϵit (2)

This specification allows us to test whether the impact of AI adoption on CMUSE 
changes at different levels of AI adoption, addressing the possibility of diminishing returns or 
acceleration effects (Nham & Ha, 2022).

Stage 3 - Machine Learning Validation: To complement the econometric analysis and 
capture complex interactions, the analysis employs a Random Forest regression model:

•	 Dependent Variable: CMUSE_std.
•	 Independent Variables: AI_std, lgdp, RESP_std, INDVA_std, and additional 

variables such as ECOMS_std and CCOMP_std.
•	 Model Parameters: 500 trees with variable importance measures.

The Random Forest model is particularly suitable for handling non-linear relationships 
and interactions without imposing restrictive functional form assumptions (Breiman, 2001). 
Variable importance is assessed based on the increase in mean squared error when a variable 
is permuted, providing insights into the relative influence of each predictor.

3.5. Diagnostic Tests and Robustness Checks
Econometric Model Diagnostics included:
•	 Hausman Test: Determines the appropriateness of the fixed-effects model over 

the random-effects model (Hausman, 1978). The test results support the fixed-
effects specification, indicating that country-specific effects are correlated with 
the explanatory variables.

•	 Heteroscedasticity Test: The Breusch-Pagan test is conducted to detect 
heteroscedasticity. Robust standard errors are employed using the Huber-White 
sandwich estimator to address any issues (White, 1980).

•	 Multicollinearity Check: Variance Inflation Factors (VIFs) are calculated to 
assess multicollinearity among the regressors. All VIFs are below the threshold 
of 5, indicating no severe multicollinearity (Gujarati & Porter, 2009).

Machine Learning Model Evaluation was performed through:
•	 Model Performance Metrics: Mean Squared Error (MSE) and the Percentage of 

Variance Explained are used to evaluate model accuracy.
•	 Variable Importance: Analyzed through the %IncMSE, providing a ranking of 

predictors based on their impact on model performance.
•	 Visualization: Actual vs. predicted plots and variable importance graphs are 

generated to visualize model fit and predictor influence.

3.7. Addressing Research Gaps through Methodological Choices
This paper’s methodological approach directly addresses the research gaps identified 

in the literature:
•	 Macro-Level Analysis: By encompassing all EU member states, the paper 

provides a comprehensive macro-level perspective, extending beyond micro-
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level studies (Popović et al., 2023).
•	 Non-Linear Dynamics: Incorporating quadratic terms and utilizing Random 

Forest regression allows this research to capture non-linear relationships and 
threshold effects (Nham & Ha, 2022).

•	 Scalability and Contextual Factors: Analyzing countries with varying levels of 
economic development and technological readiness helps explore the scalability 
of AI applications and their implications for CMUSE (Acerbi et al., 2021).

3.8. Ethical Considerations and Limitations
While this study offers valuable insights, certain limitations must be acknowledged:
•	 Temporal Scope: The analysis covers two years, which may not fully capture 

long-term trends or lagged effects.
•	 Data Availability: The reliance on secondary data sources may introduce 

inconsistencies due to reporting practices across countries.
•	 Measurement Errors: Variables based on surveys, such as AI adoption rates, may 

be subject to self-reporting biases.

Despite these limitations, the combination of rigorous econometric analysis and 
machine learning techniques enhances the robustness of the findings.

4. Research Results

Building upon the methodological framework outlined earlier, this section presents 
the empirical findings of this research on the relationship between Artificial Intelligence (AI) 
adoption and the Circular Material Use Rate (CMUSE) within the European Union (EU). 
The analysis encompasses descriptive statistics, econometric modeling, diagnostic tests, and 
machine learning validation. The results offer insights into the dynamics of AI adoption in 
promoting circular economy practices across diverse EU contexts.

4.1. Descriptive Statistics
Table 1 presents the summary statistics for the key variables used in the analysis. The 

dataset comprises observations from 27 EU member states over two years (2021 and 2023), 
totaling 54 observations.

Table 1: Summary Statistics of Key Variables
Variable Mean Median Std. Dev. Min Max
ECOMS 24.63 23.3 7.83 11.8 40.2
ECOMV 18.07 17.7 7.14 4.3 37.9
AI 7.96 7.45 4.57 1.4 23.9
CCOMP 44.71 43.25 16.79 12.8 78.3
MUSE 18.98 17.31 8.26 7.46 48.02
RESP 1.97 1.56 1.26 0.34 5.46
CMUSE 10.1 8.7 6.88 1.3 30.6
GDPpc 41,328 32,420 26,640 12,219 133,712
INDVA 22.46 22.74 6.2 10.47 38.47

Source: Own calculations.
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The mean AI adoption rate across EU countries is approximately 7.96%, with a wide 
range from 1.4% to 23.9%, indicating significant disparities in AI utilization among member 
states. This suggests that while some countries are at the forefront of AI implementation, 
others are still in the nascent stages of adoption.

Similarly, the average CMUSE is 10.10%, with values ranging from 1.3% to 30.6%, 
reflecting varying levels of circular economy implementation across the EU. The wide 
range indicates that some countries have made significant progress in recycling and reusing 
materials, while others have considerable room for improvement.

Assessing the distributional properties of the variables is essential for selecting 
appropriate statistical techniques and interpreting results accurately. Shapiro-Wilk and 
Kolmogorov-Smirnov normality tests were conducted for all variables used in the models, 
and the results are presented in Table 2.

Table 2: Normality Test Results for Variables Used in the Models
Variable SW (W) SW (p-value) KS Stat. (D) KS (p-value) Skew. Kurt.
AI 0.9325 0.0046 0.1165 0.0652 0.904 3.995
CMUSE 0.9012 0.0003 0.1378 0.0122 1.033 3.525
RESP 0.9226 0.0019 0.1619 0.0012 0.805 2.893
ECOMS 0.9578 0.0547 0.1128 0.0837 0.277 2.033
CCOMP 0.9798 0.4918 0.0660 0.8065 0.114 2.184
GDPpc 0.8020 0.0000 0.1738 0.0003 1.803 6.292
INDVA 0.9786 0.4422 0.0700 0.7336 0.179 3.109

Source: Own calculations.

The Shapiro-Wilk test results indicate that variables like AI, CMUSE, RESP, and GDP 
per Capita (GDPpc) significantly deviate from normality (p < 0.05).

AI adoption rate exhibits positive skewness (0.904) and kurtosis (3.995), indicating 
a right-skewed distribution with heavier tails than a normal distribution. This suggests that 
a majority of countries have AI adoption rates below the mean, with a few countries having 
significantly higher rates.

CMUSE also shows positive skewness (1.033) and kurtosis (3.525), implying that 
most countries have lower circular material use rates, with some outliers at the higher end.

Variables like ECOMS and INDVA do not significantly deviate from normality based 
on the Shapiro-Wilk test (p > 0.05), suggesting that parametric tests assuming normality may 
be appropriate for these variables.

The Kolmogorov-Smirnov test (KS test) generally supports the findings of the Shapiro-
Wilk test, with significant deviations from normality for variables like CMUSE and GDPpc 
(p < 0.05).

Given the deviations from normality for key variables, the research proceeded with 
caution in the econometric analysis, using robust statistical methods that do not strictly rely 
on the assumption of normality (Wooldridge, 2010).

To examine the relationships among all the key variables in this research, Pearson 
correlation coefficients were computed. The comprehensive correlation matrix is presented 
in Figure 3.
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Figure 3: Correlation Matrix

Source: Own calculations.

Based on the correlation matrix above, the analysis provided the following observations:
•	 CMUSE and AI Adoption: There is a positive correlation between CMUSE and 

AI adoption (r = 0.295). Although this correlation is moderate and not statistically 
significant at conventional levels, it suggests that higher AI adoption rates may be 
associated with increased circular material use.

•	 CMUSE and Resource Productivity: CMUSE is strongly and positively correlated 
with Resource Productivity (RESP) (r = 0.610, p < 0.01). This indicates that 
countries with higher resource efficiency tend to have higher circular material use 
rates, emphasizing the importance of resource productivity in advancing circular 
economy practices.

•	 AI Adoption and GDP per Capita: AI adoption is significantly correlated with 
GDP per Capita (r = 0.612, p < 0.01). This suggests that wealthier countries are 
more likely to adopt AI technologies, possibly due to better access to capital, 
infrastructure, and skilled labor.

•	 AI Adoption and Resource Productivity: There is a significant positive correlation 
between AI adoption and Resource Productivity (r = 0.517, p < 0.01). This implies 
that countries adopting AI tend to have higher resource efficiency, potentially 
leveraging AI for optimizing resource use.

•	 CMUSE and Cloud Computing Services: CMUSE is positively correlated with 
Cloud Computing Services (CCOMP) (r = 0.383, p < 0.05). This indicates that 
digital infrastructure may play a role in facilitating circular economy activities.

•	 CMUSE and Circular Economy Investments: A strong positive correlation exists 
between CMUSE and Circular Economy Investments (CEINV) (r = 0.501, p 
< 0.01), suggesting that higher investments in circular economy initiatives are 
associated with greater circular material use.
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•	 INDVA (Industrial Value Added) shows negative correlations with both CMUSE 
(r = -0.228) and AI adoption (r = -0.170), although these correlations are not 
statistically significant. This might imply that a higher share of traditional 
industrial activities is not necessarily aligned with higher AI adoption or circular 
economy practices.

Additionally, based on the analysis, the following insights should be showcased:
•	 Digitalization and AI: AI adoption is positively correlated with E-commerce Sales 

(ECOMS) (r = 0.502, p < 0.01) and Cloud Computing Services (CCOMP) (r = 
0.577, p < 0.01). This highlights the interconnectedness of digital technologies 
and suggests that countries embracing digital transformation are more inclined 
to adopt AI.

•	 Economic Development Factors: GDP per Capita is significantly correlated with 
RESP (r = 0.724, p < 0.01) and Consumption Footprint (CONSFP) (r = 0.700, 
p < 0.01). This indicates that wealthier countries tend to have higher resource 
productivity and consumption footprints, reflecting both efficient resource use 
and higher consumption levels.

•	 Renewable Energy Use: CMUSE has a positive correlation with Renewable 
Energy Use (RENWENG) (r = 0.364, p < 0.05), suggesting that countries 
focusing on renewable energy also tend to have higher circular material use rates.

The correlations suggest a network of relationships where AI adoption, resource 
productivity, economic development, and digital infrastructure interact to influence circular 
material use. The positive associations among these variables warrant further investigation 
through econometric modeling to determine causal relationships and the magnitude of these 
effects.

Multicollinearity was assessed among the independent variables by calculating 
Variance Inflation Factors (VIFs). All VIF values were below 2, well under the common 
threshold of 5 (Gujarati & Porter, 2009). This indicates that multicollinearity is not a 
significant concern in the regression models.

The correlation analysis highlights the interconnectedness of AI adoption, resource 
productivity, economic development, and circular economy practices. While there are 
significant positive correlations among key variables, the moderate correlations and 
acceptable VIF values suggest that multicollinearity is not a major issue, allowing us to 
proceed confidently with the econometric modeling.

4.2. Econometric Modeling Results
The correlation analysis highlights the interconnectedness of AI adoption, resource 

productivity, economic development, and circular economy practices. While there are 
significant positive correlations among key variables, the moderate correlations and 
acceptable VIF values suggest that multicollinearity is not a major issue, allowing us to 
proceed confidently with the econometric modeling.

The fixed-effects panel regression model (1) was estimated to examine the direct effect 
of AI adoption on CMUSE, controlling for key economic and industrial factors. The results 
are presented in Table 3.
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Table 3: Fixed-Effects Regression Results
Variable Coefficient Std. Error (Robust) t-value p-value
AI_std -0.013 0.068 -0.197 0.845
lgdp 0.041 0.31 0.132 0.896
RESP_std 0.475** 0.134 3.547 0.002
INDVA_std 0.11 0.143 0.774 0.447

Intercept Included

R-squared 0.407

F-statistic 3.943 (df = 4; 23) 0.014
Note: ** indicates significance at the 0.01 level. Robust standard errors are used to account for heteroskedasticity.

Source: Own calculations.

The following interpretation is derived from the results presented in the Table 3:
•	 AI Adoption (AI_std): The coefficient for AI adoption is -0.013 with a robust 

standard error of 0.068. This negative coefficient suggests that, holding other 
factors constant, an increase in AI adoption is associated with a slight decrease in 
CMUSE. However, the effect is not statistically significant (p = 0.845), indicating 
that there is no evidence of a meaningful linear relationship between AI adoption 
and CMUSE within the sample period.

•	 GDP per capita (lgdp): The coefficient is 0.041 with a robust standard error of 
0.310. This positive but insignificant coefficient (p = 0.896) suggests that higher 
GDP per capita is not significantly associated with changes in CMUSE when 
controlling for other variables.

•	 Resource Productivity (RESP_std): The coefficient is 0.475, and it is statistically 
significant at the 1% level (p = 0.002). This indicates that a one standard deviation 
increase in resource productivity is associated with a 0.475 standard deviation 
increase in CMUSE. This strong positive relationship suggests that countries 
utilizing resources more efficiently tend to have higher circular material use rates.

•	 Industrial Value Added (INDVA_std): The coefficient is 0.110 with a p-value 
of 0.447, indicating no statistically significant effect of the industrial sector’s 
contribution to GDP on CMUSE within the sample.

The R-squared value of 0.407 implies that approximately 40.7% of the within-country 
variance in CMUSE is explained by the model. This indicates a moderate level of explanatory 
power. The F-statistic of 3.943 (p = 0.014) suggests that the model is statistically significant 
overall, meaning that the independent variables, collectively, have a significant effect on 
CMUSE. 

To explore potential non-linear relationships between AI adoption and CMUSE, the 
quadratic term for AI adoption was included in the model (2). The results of the regression for 
the Model 2 are presented in Table 4.
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Table 4: Fixed-Effects Regression with Quadratic Term
Variable Coefficient Std. Error (Robust) t-value p-value
AI_std -0.1 0.111 -0.903 0.376
AI_std^2 0.026 0.026 0.987 0.335
lgdp 0.145 0.327 0.443 0.662
RESP_std 0.488** 0.135 3.626 0.001
INDVA_std 0.12 0.143 0.84 0.41

Intercept Included

R-squared 0.432

F-statistic 3.345 (df = 5; 22) 0.021
Note: ** indicates significance at the 0.01 level. Robust standard errors are used.

Source: Own calculations.

The following interpretation is derived from the results presented in Table 4:
•	 AI Adoption (AI_std): The coefficient for the linear term is -0.100, while the 

quadratic term (AI_std^2) has a coefficient of 0.026. The negative coefficient 
on the linear term and the positive coefficient on the quadratic term suggest 
a U-shaped relationship between AI adoption and CMUSE. However, both 
coefficients are not statistically significant (p = 0.376 and p = 0.335, respectively).

•	 Resource Productivity (RESP_std): Remains statistically significant (β = 0.488, p 
= 0.001), reinforcing its positive impact on CMUSE.

•	 GDP per capita (lgdp) and Industrial Value Added (INDVA_std): Both variables 
remain statistically insignificant, consistent with the linear model.

The R-squared increases slightly to 0.432, indicating that the model explains about 
43.2% of the within-country variance in CMUSE. This marginal improvement suggests that 
adding the quadratic term does not substantially enhance the model’s explanatory power. The 
F-statistic is 3.345 (p = 0.021), indicating that the model is statistically significant overall.

To ensure the reliability of the regression results, several diagnostic tests were 
conducted.  The Hausman test was conducted to determine the suitability of the fixed-effects 
model over the random-effects model. The test yielded a chi-square statistic of 14.57 with 
4 degrees of freedom and a p-value of 0.0057, which was significant at the 5% level. This 
result supports the use of the fixed-effects model (Hausman, 1978). At the same time, the 
Breusch-Pagan test indicated the presence of heteroskedasticity (Chi-square = 10.84, p = 
0.0285). Accordingly, robust standard errors were employed using the Huber-White sandwich 
estimator to ensure reliable inference (White, 1980).

4.3. Machine Learning Validation
To complement the econometric analysis and capture potential non-linear relationships 

and complex interactions among variables, the Random Forest regression model was 
employed using the same set of predictor variables: AI adoption (AI_std), GDP per Capita 
(lgdp), Resource Productivity (RESP_std), and Industrial Value Added (INDVA_std). 
Random Forest is an ensemble machine learning method that constructs multiple decision 
trees during training and outputs the average prediction of the individual trees, which helps 
in handling non-linearities and interactions without the need to specify them explicitly 
(Breiman, 2001).
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The Random Forest model was trained on the dataset comprising 54 observations. The 
performance metrics of the model are as follows:

•	 Mean Squared Error (MSE): 0.505
•	 Percentage of Variance Explained: 48.58%

These metrics indicate that the Random Forest model explains approximately 
48.6% of the variance in CMUSE, which is slightly higher than the R-squared 
values obtained from the econometric models (40.7% and 43.2% for the linear and 
quadratic models, respectively). This suggests that the Random Forest model captures 
additional variance potentially due to non-linear relationships and interactions 
among variables.

To understand the contribution of each predictor to the model, the variable 
importance measures were examined based on the percentage increase in MSE when 
each variable is permuted. Figure 4 illustrates the importance of each variable.

 Figure 4: Variable Importance in Random Forest Model

Source: Own calculations.

The variable importance scores are as follows:
1.	GDP per capita (lgdp): 14.31% increase in MSE
2.	Resource Productivity (RESP_std): 10.28% increase in MSE
3.	Industrial Value Added (INDVA_std): 8.96% increase in MSE
4.	AI Adoption (AI_std): 6.71% increase in MSE

The following interpretation is derived from the results presented in Figure 4:
•	 GDP per capita (lgdp) is identified as the most important predictor in the 

Random Forest model. This suggests that economic development levels 
play a significant role in determining a country’s circular material use rate. 
Wealthier countries may have more resources to invest in circular economy 
initiatives and advanced technologies.
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•	 Resource Productivity (RESP_std) remains a key predictor, consistent with the 
econometric analysis. Its high importance underscores the critical role of efficient 
resource utilization in enhancing circular material use.

•	 Industrial Value Added (INDVA_std) also contributes significantly to the model, 
indicating that the structure of the economy and the industrial sector’s share may 
influence CMUSE.

•	 AI Adoption (AI_std), while contributing to the model, has a lower relative 
importance compared to the other variables. This aligns with the econometric 
results, where AI adoption did not have a statistically significant impact on 
CMUSE.

To assess the predictive accuracy of the Random Forest model, the actual versus 
predicted values of CMUSE were plotted.

 Figure 5: Actual vs. Predicted CMUSE Values from Random Forest Model

Source: Own calculations.

The scatter plot in Figure 2 displays the actual CMUSE values on the x-axis and the 
predicted values from the Random Forest model on the y-axis. The dashed line represents the 
ideal 45-degree line where the predicted values equal the actual values.

The following interpretation is derived from the results presented in Figure 5:
•	 The data points are reasonably aligned along the 45-degree line, indicating that 

the model predictions are generally consistent with the actual CMUSE values.
•	 Some deviations are observed, which is expected given the complexity of the 

factors influencing CMUSE and the relatively small sample size.
•	 The visualization confirms that the Random Forest model provides a satisfactory 

fit to the data, capturing a significant portion of the variability in CMUSE.
To ensure the reliability of the Random Forest results, the following robustness tests 

were conducted:
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•	 Cross-Validation:
	 A 5-fold cross-validation yielded an average MSE of 0.5425, confirming 

the model’s predictive stability.
	 Additional metrics from cross-validation include an average RMSE of 

0.7289 and an average R-squared of 0.5048, demonstrating consistent 
performance across folds.

•	 Alternative Specifications:
	 The inclusion of interaction terms and quadratic terms marginally 

improved model performance.
	 The variable importance rankings remained consistent, reinforcing the 

robustness of the original results.
•	 Hyperparameter Tuning:

	 The model’s hyperparameters were tunned, including the number of 
variables sampled at each split.

	 The optimized model achieved a final MSE of 0.0838, with variable 
importance rankings consistent with the base model.

The machine learning validation provides valuable insights into the factors influencing 
CMUSE and corroborates the conclusions of the econometric analysis. The Random Forest 
model’s ability to handle complex relationships adds depth to the understanding of the 
interplay between AI adoption, economic development, resource productivity, and circular 
economy outcomes.

The empirical analysis demonstrates that while there is a positive correlation between 
AI adoption and CMUSE, AI adoption does not have a statistically significant direct impact 
on CMUSE when controlling for other factors. Resource Productivity consistently emerges 
as a significant and robust predictor across both econometric and machine learning models, 
underscoring its critical role in advancing circular economy practices. Additionally, GDP 
per Capita plays a vital role, suggesting that higher levels of economic development enable 
countries to invest more effectively in circular economy initiatives and advanced technologies. 
These findings imply that policies aimed at enhancing resource efficiency and supporting 
economic growth may be more immediately effective in promoting circular material use 
within the EU. Further research with extended time frames and more detailed data could 
uncover delayed or sector-specific effects of AI adoption on the circular economy.

5. Discussion

The present study sought to investigate the relationship between Artificial Intelligence 
(AI) adoption and the Circular Material Use Rate (CMUSE) across the European Union 
(EU) member states. By employing a mixed-method quantitative approach that integrated 
econometric modeling and machine learning validation, the research aimed to address three 
primary research questions:

1.	How does AI adoption influence CMUSE in EU member states?
2.	What is the nature of this relationship—linear, non-linear, or threshold-based?
3.	How do economic development and technological readiness affect this relationship?
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This discussion interprets the empirical findings in light of these research questions, 
connecting them to the theoretical frameworks and previous literature presented earlier. The 
paper also explored the implications for policy and practice, acknowledging the study’s 
limitations and proposing directions for future research.

5.1. The Influence of AI Adoption on CMUSE

The econometric analysis revealed that AI adoption does not have a statistically 
significant direct impact on CMUSE when controlling for other factors such as GDP per 
Capita, Resource Productivity, and Industrial Value Added. Specifically, the fixed-effects 
regression models showed negative but insignificant coefficients for AI adoption, both in 
linear and non-linear specifications (Tables 3 and 4). Similarly, the Random Forest model 
assigned a lower relative importance to AI adoption compared to other predictors (Figure 4).

These findings contrast with the theoretical expectations and prior studies that 
emphasize AI’s potential to enhance circular economy practices (Tutore et al., 2024; Platon et 
al., 2024). The lack of a significant direct impact may be attributed to several factors:

•	 Temporal Lag: The effects of AI adoption on CMUSE may require more time 
to materialize. Given the relatively recent surge in AI implementation across 
industries, especially in the EU, the benefits for circular material use might not 
yet be observable at the macroeconomic level.

•	 Scale of Adoption: The average AI adoption rate among EU countries is 7.96%, 
with significant disparities (Table 1). Such low adoption levels may not be 
sufficient to produce measurable impacts on CMUSE across the entire economy.

•	 Micro vs. Macro-Level Effects: Previous research has often focused on firm-
level or sector-specific benefits of AI in promoting circularity (Acerbi et al., 2021; 
Ghoreishi & Happonen, 2020). The aggregation to the national level may dilute 
these effects due to heterogeneity among industries and firms.

•	 Complementary Factors: The effectiveness of AI in advancing CE objectives may 
depend on complementary infrastructures, such as advanced waste management 
systems, regulatory support, and cross-sector collaboration (Popović et al., 2023). 
The absence of these enablers could hinder AI’s potential impact on CMUSE.

5.2. Nature of the Relationship Between AI Adoption and CMUSE
The inclusion of a quadratic term for AI adoption in the fixed-effects model aimed to 

capture potential non-linearities or threshold effects. However, both the linear and quadratic 
terms of AI adoption remained statistically insignificant (Table 4). The Random Forest model, 
designed to handle complex non-linear relationships, also did not identify AI adoption as a 
significant predictor compared to GDP per Capita and Resource Productivity.

The absence of significant non-linear effects suggests that within the observed range 
of AI adoption rates, there is no evidence of diminishing returns or threshold levels that 
significantly influence CMUSE. This finding challenges the propositions by Nham and 
Ha (2022) and Platon et al. (2024), who suggested possible non-linear dynamics in the 
relationship between digital technology adoption and circularity outcomes.

The possible explanations for the results include:
•	 Homogeneity in AI Adoption Levels: The relatively narrow range and low 

average of AI adoption rates may not provide sufficient variation to detect non-
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linear effects.
•	 Dominance of Other Factors: The influence of economic development and 

resource productivity may overshadow any subtle non-linear impacts of AI 
adoption on CMUSE.

•	 Measurement Limitations: The use of aggregated AI adoption rates may not 
capture the nuances of different AI applications and their varying impacts on 
circular practices.

5.3. The Role of Economic Development and Technological Readiness
Both the econometric and machine learning analyses highlighted the significant 

roles of GDP per Capita and Resource Productivity in influencing CMUSE. While GDP 
per Capita was not statistically significant in the econometric models, it was identified as 
the most important predictor in the Random Forest model (Figure 4). Resource Productivity 
consistently showed a strong positive and significant effect on CMUSE across all models. 
The interpretation of these results is presented in the lines below.

•	 Economic Development (GDP per Capita): The importance of GDP per Capita 
aligns with the notion that wealthier countries possess more resources to invest 
in circular economy initiatives and advanced technologies (Platon et al., 2024; 
Popović et al., 2022). Higher economic development facilitates infrastructure 
development, research and innovation, and the adoption of sustainable practices.

•	 Resource Productivity: The significant impact of Resource Productivity 
underscores the critical role of efficient resource utilization in advancing circular 
economy objectives (Kirchherr et al., 2017; Ghisellini et al., 2016). Countries that 
manage resources more efficiently tend to have higher rates of material recycling 
and reuse.

•	 Technological Readiness: The positive correlations between CMUSE and 
indicators of digital infrastructure, such as Cloud Computing Services (CCOMP) 
and E-commerce Sales (ECOMS), suggest that technological readiness 
contributes to circular economy practices. This supports findings by Popović et 
al. (2022) and Tutore et al. (2024), who emphasized the enabling role of digital 
technologies in implementing CE principles.

The research results have broad and deep implications, which include:
•	 Policy Alignment: The results highlight the necessity of aligning technological 

advancement with economic and resource efficiency policies. Investments in AI 
and digital technologies should be complemented by efforts to enhance resource 
productivity and economic development to maximize their impact on CMUSE.

•	 Tailored Interventions: The disparities in economic development and 
technological readiness among EU member states indicate the need for tailored 
policy interventions. Less affluent countries may require additional support to 
build the necessary infrastructure and capabilities for effective AI integration into 
circular economy strategies (Popović & Milijić, 2021).
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5.4. Integration with Theoretical Frameworks, Limitations 
and Future Research

The study’s findings resonate with the Resource-Based View (RBV) and the Dynamic 
Capabilities Framework, which emphasize the importance of leveraging resources and 
competencies to achieve competitive advantage and adapt to environmental changes (Barney, 
1991; Teece et al., 1997). The significant role of Resource Productivity suggests that countries 
effectively utilizing their resources can enhance their circular economy performance.

Moreover, the results align with the CE dimensions outlined by Kirchherr et al. 
(2017) and the sustainable product lifecycle strategies discussed by Aleksić et al. (2023). The 
emphasis on resource efficiency and economic development reinforces the interconnectedness 
of environmental sustainability and economic competitiveness.

This research provides valuable insights into the complex relationship between 
AI adoption and circular material use within the EU. While AI adoption does not exhibit 
a significant direct impact on CMUSE in the short term, the critical roles of Resource 
Productivity and Economic Development are evident and consistent across both econometric 
and machine learning models. These findings emphasize the importance of focusing on 
resource efficiency and economic growth as primary drivers of circular economy practices. 
Additionally, the lack of significant non-linear effects suggests that the benefits of AI adoption 
on CMUSE may either require a longer timeframe to manifest or depend on complementary 
factors not captured in this study. Future research should explore these dimensions further to 
fully understand the potential of AI in fostering sustainable economic transitions.

6.  Conclusion

This research provides a comprehensive examination of the relationship between 
Artificial Intelligence (AI) adoption and the Circular Material Use Rate (CMUSE) within 
the European Union (EU). By employing a mixed-method approach integrating econometric 
modeling and machine learning validation, the research offers nuanced insights into the 
interplay between digital transformation and circular economy practices. The findings 
contribute to the growing body of literature on sustainable development, addressing critical 
gaps in understanding how emerging technologies influence macroeconomic indicators of 
sustainability.

The econometric results reveal that AI adoption does not have a statistically significant 
direct effect on CMUSE. This outcome contrasts with theoretical expectations and highlights 
the complexity of translating technological advancements into measurable circular economy 
outcomes at the macroeconomic level. While AI’s transformative potential has been widely 
discussed, its impact on circular practices may depend on factors such as the scale and 
maturity of adoption, temporal lags, and the presence of complementary infrastructures. The 
analysis suggests that the benefits of AI adoption for circular material use might manifest 
more strongly at the microeconomic level - within specific industries or firms - than in 
aggregated national-level data.

The machine learning validation reinforces the econometric findings by demonstrating 
that AI adoption while contributing to the explanatory model, has relatively lower importance 
compared to other predictors such as GDP per Capita and Resource Productivity. These 
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results emphasize the critical roles of economic development and resource efficiency in 
shaping circular economy outcomes. Wealthier countries with advanced infrastructures 
and institutional capacities are better positioned to leverage technological innovations for 
sustainability. Similarly, countries with higher resource productivity are more likely to 
achieve greater material circularity, underscoring the need for policies that prioritize efficient 
resource utilization alongside technological investments.

The absence of significant non-linear or threshold effects of AI adoption on CMUSE 
further challenges assumptions in prior studies, which posited that diminishing returns 
or acceleration effects might influence this relationship. Within the observed range of AI 
adoption rates, there is no evidence to suggest such dynamics. This finding points to the 
potential limitations of aggregated AI adoption metrics and the need for future research to 
consider more granular data that captures the diversity of AI applications and their sector-
specific impacts.

The implications of this study are important for both academic inquiry and policy 
design. For researchers, the findings highlight the importance of integrating macroeconomic 
analyses with sectoral and micro-level studies to uncover the mechanisms through which AI 
adoption influences sustainability. The combination of econometric and machine learning 
approaches in this study demonstrates the value of methodological pluralism in capturing 
both linear and complex non-linear dynamics. Future research should build on this foundation 
by extending the temporal scope, exploring industry-specific applications, and examining 
mediating factors such as policy frameworks, institutional quality, and cultural attitudes 
toward sustainability.

For policymakers, the results suggest that investments in AI technologies should be 
complemented by initiatives that enhance resource productivity and economic development. 
The findings underscore the necessity of aligning digital transformation strategies with 
sustainability goals to ensure that technological advancements translate into tangible 
environmental benefits. Tailored policy interventions are particularly critical for less-
developed EU member states, where disparities in economic capacity and technological 
readiness may hinder the realization of AI’s potential to advance circular economy objectives. 
Collaborative frameworks that facilitate knowledge sharing and capacity building across the 
EU could help bridge these gaps and promote more equitable progress toward circularity.

Finally, this research reaffirms the centrality of economic development and resource 
efficiency in driving circular economy practices, while raising critical questions about the 
current and potential role of AI adoption in this process. Although AI’s transformative 
potential remains undeniable, its direct impact on CMUSE is contingent upon a range of 
contextual and systemic factors that merit further exploration. By providing robust empirical 
evidence and actionable insights, this research contributes to the ongoing discourse on 
leveraging technological innovation for sustainable development. It underscores the need 
for integrated strategies that balance economic, technological, and environmental priorities, 
offering a pathway for the EU and beyond to achieve a more sustainable and resilient future.
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