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Abstract

The purpose of this paper is to develop and present a decision support system 
for improving the operations of public utility companies that deal with solid waste 
management. The proposed system was developed on the basis of a decision system 
model based on solving a limited linear optimization problem, taking into account 
all the specifics of the operation of public utility companies in the Republic of 
Serbia, which originate from the legal regulation of waste management, up to the 
purpose and specifics of the existence of public companies. The originality of the 
work is reflected in the fact that there are no similar solutions. The implementation 
of the proposed system will significantly contribute to the reduction of the operating 
costs of public companies that deal with municipal waste management.
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РАЗВОЈ ИНТЕЛИГЕНТНОГ СИСТЕМА ЗА ПОДРШКУ 
ОДЛУЧИВАЊА У ФУНКЦИЈИ УНАПРЕЂЕЊА ПОСЛОВАЊА 

ЈАВНИХ КОМУНАЛНИХ ПРЕДУЗЕЋА 
Апстракт

Сврха овог рада јесте да се развије и представи систем за подршку 
одлучивања за унапређење пословања јавних комуналних предузећа која се баве 
управљањем чврстог отпада развијен. Предложени систем развијен на основама 
модела система одлучивања заснованом на решавању ограниченог проблема 
линеарне оптимизације, уз уважавање свих специфичности пословања јавних 
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комуналних предузећа у Републици Србији, а која потичу од законске регулативе 
управљања отпадом, па до сврхе и специфичности битисања јавних предузећа. 
Оригиналност рада огледа се у чињеници да нема сличних решења. Примена 
предложеног система у значајној мери ће допринети редуковању трошкова 
пословања јавних предузећа која се баве управљањем комуналним отпадом.

Кључне речи: систем за подршку одлучивања, управљање отпадом, јавна 
предузећа, Република Србија

Introduction 

The aim of this paper is to develop an efficient Decision Support System (DSS) 
designed to improve the operations of public enterprises in the Republic of Serbia involved 
in municipal waste management, including activities such as incineration, disposal, 
treatment, and recycling. The treatment of waste encompasses a range of processes, such 
as separation, the production of refuse-derived fuel (RDF), energy recovery through 
incineration, organic material processing, and sanitary landfilling. According to the World 
Bank (2024), the global volume of solid waste amounts to approximately 2.5 billion tons, 
while in the Republic of Serbia, it reached about 174 million tons in 2022 (Statistical Office 
of the Republic of Serbia (SORS), 2024). There is a noticeable trend of continuous growth 
in both the quantity and complexity of waste composition, driven by the increased use 
of plastic and electronic products, as noted by Herva et al. (2014). This trend has led to 
significant concern and a heightened focus in recent years, both globally and locally, on 
solving issues related to solid waste management. Urbanization and population growth in 
cities are the main drivers of waste generation patterns and waste toxicity (Eriksson and 
Bisaillon, 2003, 2011; Herva et al., 2014; Emkes et al., 2015). Consequently, the treatment 
of solid waste has become one of the most challenging service sectors for municipal 
authorities in the 21st century (Zaman, 2014). Furthermore, when considering the emission 
of waste into air, water, and soil—posing serious risks to public health, environmental 
hazards both locally and globally, and socio-economic challenges (Ikhlayel et al., 201)—
the issue of efficient solid waste management becomes even more critical and complex.

These complex management requirements are better controlled when supported by 
tools for evaluating the overall system performance, including administrative, financial, 
legal, and planning aspects (Mendes et al., 2013). According to Eriksson et al. (2003), the 
main advantages of waste management models lie in their ability to handle complexity 
and uncertainty. Therefore, the development of appropriate systems based on modern 
ICT for solid waste management is essential. One potential solution is the development 
of a Decision Support System (DSS). The primary goal of a DSS is to plan municipal 
waste management, define the waste flows that need to be directed toward recycling or 
various treatment and disposal facilities, and propose the optimal number, types, and 
locations of facilities that need to be operational. A specific goal of the research is to 
develop a software solution that will enable the effective implementation of the model.

The idea is to develop a DSS as a decision-making system based on solving a 
constrained nonlinear optimization problem using two types of variables: binary and 
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continuous. This approach would rely on the use of a genetic algorithm for optimization, 
as such an algorithm can efficiently handle different types of variables and return an 
optimal solution regardless of the starting point. The objective function would take into 
account all possible economic costs, while the constraints would arise from technical, 
regulatory, and environmental considerations. For this purpose, a linear or quadratic 
optimization model can be used. Thus, the combination of genetic algorithms with 
optimization techniques can be an effective approach to solving complex decision-
making problems in the field of waste management. Simply put, the decision-making 
model must consider all factors significant for making decisions related to waste 
management, ensuring that the outcome is a decision that minimizes total costs while 
addressing all aspects of waste management and adhering to constraints arising from 
technical, regulatory, and environmental issues. For example, technical constraints relate 
to the capacity of waste treatment facilities, the technology used, and similar factors. 
Regulatory constraints include legal regulations and standards that must be met during 
waste management. Environmental constraints relate to protecting the environment and 
minimizing negative impacts on the surroundings.

Therefore, the aim of this paper is to develop a decision-support model that 
accounts for both environmental and economic aspects of waste management in local 
governments. The application of this approach will enable the modeling and analysis of a 
heterogeneous set of subsystems affected by decisions related to solid waste management. 
By integrating all subsystems into the decision-making process, it will be possible to 
make optimal decisions regarding the size and typology (e.g., separators, incinerators, 
etc.) of various treatment facilities, based on a detailed analysis of waste composition. 
Ultimately, this will result in improved operations of public utility companies in the 
Republic of Serbia.

Literature review 

In recent years, numerous papers can be found that have the development of solid 
waste management models as their subject. Most of these models are based on decision 
support models. The basic idea behind the authors of these papers in developing the model 
is to create an optimal trade-off between reality and the computational complexity of the 
model. In other words, they are guided by the requirement that the model reflects the 
real situation as realistically as possible, without being too complex for data processing. 
Since solid waste management in urban areas represents a very complex problem that 
includes various aspects of the functioning of society, starting from economic and 
technical issues, up to compliance with human and environmental protection standards, 
the development of a model that will reflect the optimal trade-off between reality and 
computational complexity represents a very difficult task. Therefore, it is not surprising 
that many authors have not been successful in achieving this requirement.

The consequence of the above mentioned is that the authors have mainly focused 
on one aspect of the functioning of a society due to the fact that solid waste management, 
from its generation to final treatment, is very complex (Chen & Wang, 2017). In addition, 
it should be added that solid waste management is further complicated by the lack of 
awareness and community participation, the mind set and commitment of staff, the lack 
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of improved collection equipment, the lack of human resources, the lack of landfill 
land, inexperienced operation and maintenance of the landfill, financial constraints, 
staff training, the shortage of basic studies and insufficient data on solid waste, etc. 
(Santibanez-Aguilar et al., 2017). For this reason, as a rule, many authors have focused 
on the development of economically based optimization models for the allocation of 
municipal waste streams. The first such model was presented by Chang & Chang (1998). 
The model is based on the minimization of the total costs of waste management. The 
minimization of the objective function is achieved by solving a constrained nonlinear 
optimization problem. The cost function includes the costs of transportation, treatment, 
maintenance and recycling and takes into account the possible benefits from the 
sale of electricity. However, the main drawback of this model is that it does not take 
into account other aspects of society, such as environmental protection, as well as 
technological aspects of waste treatment. Based on this model, Fiorucci et al., (2003) 
developed a similar model, which takes into account different classes of constraints, such 
as regulations on minimum recycling requirements, incineration process requirements, 
landfill conservation and mass balance. However, the cost function which should be 
minimized only includes the costs of recycling, transportation, and maintenance.

It can be stated that a large number of studies focusing solely on the economic 
criterion, primarily the selection of the optimal location for an inter-municipal landfill, 
are based on the application of AHP and fuzzy methods. Such models were presented 
by Afzali et al. (2014), Kahraman et al. (2017), Kharat et al. (2019), Rani et al. (2021), 
Das et al. (2022), Kabir et al. (2022), Musart et al. (2022), Demircan and Yetilmezsoy 
(2023), Aghad et al. (2024), Kang et al. (2024), Sadati et al. (2024), Shukor et al. (2024), 
and others. However, an approach based solely on economic considerations cannot be 
considered fully satisfactory when addressing waste management issues. In fact, a broad 
range of potential developments must be considered. Above all, modeling the impact 
of solid waste management on the environment requires modeling and analysis of a 
fairly heterogeneous set of subsystems influenced by decisions related to solid waste 
management. In this context, multi-criteria decision models are effective because they 
allow decision-makers to assess existing or potential alternatives while simultaneously 
considering and applying multiple conflicting criteria (Belton & Stewart, 2002; Kou et 
al., 2011; Zhou et al., 2010). Due to their ability to process several criteria, these models 
are considered highly efficient for decision support in solid waste management (Soltani 
et al., 2015). Based on this, the model presented by Garcia-Garcia (2022) represents 
an attempt to incorporate a greater number of social aspects and utilization. However, 
the main drawback of this model is that it does not cover all relevant aspects of society 
and relies on simple techniques of the Analytical Hierarchy Process (AHP) (multi-
criteria decision-making). A similar model, integrating more sustainability criteria in 
waste management, was presented by Torkayesh et al. (2022). Their model includes 
environmental, social, and economic criteria and is based on a combination of multi-
criteria decision-making models and life cycle assessment models that evaluate the 
sustainability of waste management systems. However, the model does not include the 
technical-technological aspects of solid waste management.

The most comprehensive solid waste management model currently available is 
presented by Shaban et al. (2022). The authors developed a generic optimization model 
suitable for developing an efficient solid waste management system in developing 
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countries. A mixed-integer linear programming model has been formulated for a solid 
waste management system configuration that integrates waste generation sources, 
collection/transfer stations, recycling facilities, incineration plants, and landfills. The 
proposed model is designed to determine the optimal number and locations of various 
facilities, as well as the optimal waste flow within the system, aiming to minimize the 
net daily costs incurred by the system. However, the model does not incorporate legal 
regulations. A similar model was presented by Ahani et al. (2019), Anwar et al. (2018), 
and Yousefloo & Babazadeh (2019).

In recent years, with the development of machine learning (ML) and artificial 
intelligence, an increasing number of researchers have focused on developing IT-based 
models for waste management. This is because the quantification and prediction of solid 
waste play a vital role in the efficient planning of solid waste management systems (Singh 
& Satija, 2017). The application of neural networks, as opposed to traditional statistical 
analysis techniques, enables effective analysis of sophisticated nonlinear functions in 
multidimensional spaces (Kannangara et al., 2017), providing a solid foundation for 
analyzing the multidimensional problem of waste management. Similar perspectives are 
shared by Younes et al. (2015) and Yusoff et al. (2018). Therefore, this approach offers a 
strong basis for studying issues such as solid waste management (Jalili & Noori, 2004; 
Ponce, 2004; Kurtulus et al., 2006; Yamin et al., 2008; Noori et al., 2010; Oliveira et al., 
2018), despite the fact that predicting solid waste remains uncertain due to the dynamic 
and unpredictable nature of social, economic, and demographic factors (Chhay et al., 
2018). Furthermore, accelerated economic development and urbanization add to the 
already complex nature of solid waste (Shams et al., 2017). Hoque et al. (2020) utilized 
artificial intelligence to predict landfill surface area based on solid waste collection 
forecasting. Meza et al. (2019), Camero et al. (2019), and Kulisz and Kujawska (2020) 
focused on predicting solid waste quantities, while Batinić et al. (2011) used AI to predict 
waste characteristics. Gue et al. (2022) developed a machine learning model based 
on rule-based analysis to evaluate the impact of city and country attributes on waste 
management. Unfortunately, their model identified local governance and technological 
research as key attributes influencing sustainable waste management but did not offer 
strategies for managing waste at the enterprise level under local government jurisdiction, 
either directly or indirectly. A similar effort was presented by Mishra et al. (2022), who 
introduced a Smart Waste Management Model. This model combines the concepts of 
the Internet of Things (IoT) and artificial intelligence. The core idea of their model is 
to leverage the predictive capabilities of AI-based models and apply these advantages 
in automated decision-making. However, their model focuses solely on prioritizing bin 
emptying decisions rather than addressing the entire waste management flow at the local 
governance level. The idea for their model was inspired by works of various authors, 
such as Alizadeh et al. (2018), Ayeleru et al. (2021), and Fan et al. (2022a, b), who used 
neural network models to solve specific problems in urban management. Among the 
pioneers using neural network models based on multi-layer perceptron (MLP) for waste 
management were Alidoust et al. (2021) and Lin et al. (2022). The model developed 
by Lin et al. (2022) is particularly noteworthy because it incorporates criteria related to 
storage, transportation, and disposal of waste into the decision-making process. Alidoust 
et al. (2021) used their model for modeling physical properties of waste, while Ayeleru 
et al. (2021) applied it for quantity prediction. A notable challenge with ML models is 
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their limited interpretability for decision-makers (Rudin, 2019). Rule-based “if-then” 
systems, on the other hand, allow for easier subjective interpretation because causal 
relationships are inherently expressed in linguistic form (Gue et al., 2022).

However, regardless of the purpose for which neural network models are used 
in solid waste management, a common issue is that the model’s performance depends 
on the historical length and quality of the data (Masebinu et al., 2017). Supporting the 
use of neural networks are the findings of Sun and Chungpaibulpatana (2017), who 
demonstrated that artificial neural networks (ANN) provide highly accurate predictions 
of waste generation. They also highlighted that influential factor such as total population, 
age, number of households, household income, and similar variables significantly 
contribute to waste generation. Similar arguments supporting the use of neural networks 
have been presented by Abdoli et al. (2011), Shahabi et al. (2012), Antanasijević et 
al. (2013), Shamshiry et al. (2014), Azadi and Karimi-Jashni (2016), and Abbasi and 
Hanandeh (2016).

The increase in municipal solid waste (MSW) generation has become not only a 
significant sustainability challenge but also a major financial burden for municipalities 
worldwide. Therefore, it is insufficient to focus solely on waste quantity prediction; it is 
equally important to involve the public in the waste management process, as they are key 
stakeholders. This has led to the development of a second group of waste management 
models that incorporate public participation in decision-making processes. These models 
aim to achieve a compromise among stakeholders, given that conflicts often arise from 
the complex network of stakeholder values. Such conflicts can impact the feasibility 
of implementing any decision (Ananda et al., 2003). Models of this kind have been 
presented by Hung et al. (2006), Morrissey and Browne (2004), and Wilson et al. (2001). 
These models are typically based on a combination of multi-objective programming 
methods and multi-criteria decision-making approaches. The primary drawback of these 
models lies in determining the degree of consensus required among stakeholders. As a 
result, their application in municipal-level solid waste management remains debatable.

Few studies have focused on the development of ICT-based decision support 
systems (DSS) for solid waste management in local governments. Decision support 
systems are valuable tools that assist managers in ensuring compliance with solid 
waste management regulations proposed by governments. Pires et al. (2011) and 
Souza Melaré et al. suggested that DSS can be developed using ICT and optimization 
algorithms. Building on these ideas, it is possible to develop an ICT-based decision 
support system that would be effective in public enterprises in the Republic of Serbia 
engaged in solid waste treatment. Despite the fact that various stakeholders are involved 
in solid waste management in the Republic of Serbia, each with different concerns 
and criteria encompassing economic, environmental, political, and social aspects, an 
efficient system can be developed. Such a system would allow for the classification and 
analysis of alternative solutions while respecting the wide range of conflicting criteria. 
In developing the system, a systemic approach will be adopted, as proposed by various 
authors, including Staples and Niazi (2008), Kitchenham and Charters (2007), Guessi et 
al. (2011), and Souza Melaré et al. (2017).
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Model Development and object function

The model development assumes that urban planning documents in the 
municipalities of the Republic of Serbia have designated locations for the construction 
of certain types of facilities. Since these facilities may or may not be built, binary 
variables are introduced into the model (whether they will be built or not). Therefore, the 
problem of making optimal decisions is reduced to solving an optimization problem with 
nonlinear functions and integer decision variables. 

The first step in model development is to consider the process of solid waste treatment. 
Given that the Republic of Serbia is aligning its regulations with those of the European Union, 
the model is based on the classification of solid waste as prescribed by the EU. According 
to EU regulations, solid waste is classified into 11 categories: 1 - paper, 2 - heavy plastic, 3 - 
plastic bags, 4 - plastic bottles, 5 - glass, 6 - organic, 7 - wood, 8 - metals, 9 - residual waste, 
10 - inert materials, and 11 - textiles. It is noted that for each waste category, the calorific 
value of the waste before and after any treatment is determined based on the chemical 
composition of the waste. Daily quantities of waste are collected from various locations, 
with only 9 categories of waste being recyclable, and they can be collected either separately 
or partially separated (paper, heavy plastic, plastic bags, plastic bottles, glass, organic waste, 
wood, metals, and textiles). The collected waste undergoes separation, with the separation 
process depending on the method of collection. The remaining waste, which is collected 
without separating different materials, is sent for further separation, landfill, or incineration. 
From the separation process, three types of sorted waste can emerge:

• Metals, which are sent for recycling.
• Organic materials (wet waste), which undergo further treatment: 

o Organic material sent for recycling is used for compost production.
o Wet material is processed in an organic waste treatment facility, resulting 

in stabilized organic material (SOM) and residues. SOM can be sold, 
incinerated in a waste-to-energy facility, or sent to a landfill, while the 
residues are directly sent to the landfill.

• Other materials (dry waste), which can be incinerated, sent to a facility for fuel 
production, or disposed of in a landfill.

It is important to note that recycling alters the composition of waste sent for 
incineration. This means that its calorific value changes after recycling, and consequently, 
the energy recovery value from waste incineration is also affected. This data is taken into 
consideration due to the positive benefits of energy recovery through waste incineration. 
The material sent to the landfill can be directed to either a conventional landfill or a 
sanitary landfill, with the quantity of waste disposed of being limited by the maximum 
flow of municipal solid waste that can be sent to the landfill, or equivalently, by the 
minimum number of years required to completely fill the landfill.

In addition to the aforementioned specifics, the model development takes into 
account the possibility of multiple locations for each type of facility, including separation, 
incineration, recycling, landfills, and waste treatment. This means that indicators can be 
assigned to each facility to handle a specific quantity and type of waste. The existence 
of different locations increases the waste treatment costs. This concept can be best 
represented graphically, as shown in Figure 1.
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Figure 1. Waste treatment model in public utility companies (PUC)

Note: Qi,R  –  Quantity of waste of the i-th material that is directly recycled; Qi,S  – Quantity 
of waste of the i-th material that goes to separation; Qi,S,R – Quantity of waste of the i-th 
material that goes from separation to recycling (metals, i=8); Qi,S,T  – Quantity of waste of the 
i-th material that goes from separation to treatment; Qi,S,T, SOM– Quantity of waste of the i-th 
material from treatment representing stabilized organic material (SOM);  Qi,S,T, waste  – Quantity 
of waste of the i-th material from treatment representing waste; Qi,S,T, Sum of Materials – Quantity 
of waste of the i-th material that does not go to treatment from separation due to being dry 
material and directly goes to either the incinerator, landfill, or fuel production.
Source: Authors

The decision variables related to separation would be: 𝜓ₛᵖ, 𝜓ᵣᵩ, 𝜓ᵢⁿ, 𝜓ₗᵐ, and 𝜓ᵗₗ. 
Similarly, variables for landfills, fuel production, waste treatment, and 
incineration would be defined. Binary variables would refer to all these facilities 
to describe whether they exist or not, and they would be coded as 1 for existence 
and 0 for non-existence. Thus, we get: Sp – indicator for the p-th separator 
(p = 1…P), Rq – indicator for the q-th fuel production facility (q = 1…Q),  
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In – indicator for the n-th incinerator (n = 1…N), Lm – indicator for the m-th landfill 
(m = 1…M), Tl – indicator for the l-th organic waste treatment facility (l = 1…L).

Considering the described solid waste treatment process, as well as all the listed 
constraints, the cost function encompasses all costs, from collection costs, placement, 
and procurement of various types of containers, to waste recycling. For example, 
transportation costs represent a function of the number of vehicles (maintenance and 
fuel costs), employee wages (which depend on the number of trips required for waste 
transport and the number of trips one driver can make during their working day), and 
variable costs determined by the distance between different facilities and waste collection 
points. Therefore, transportation costs can be represented as follows:

  (1)           

The following symbols represent:
X - Set of possible connections between two facilities
s,d - Connection between two facilities
Cs,d - Transportation costs between facilities
Qs,d - Quantity (volume) of waste transported between facilities on an annual basis
 Vs,d - Capacity of a single vehicle for waste transportation used on the route   

between two facilities

The second group of costs consists of installation and maintenance costs of the 
facilities. These costs include a fixed component 𝐶𝐹 and a variable component 𝐶𝑉. The 
fixed cost depends on the decision of whether the facility is included in the system or 
not and is incorporated into the cost function. This is an integer decision. For example, 
a decision of 1 means that the facility is used and the fixed cost is included in the cost 
function. If the decision is 0, the facility is not included and the fixed cost does not 
contribute to the total cost function. This represents a cost proportional to the amount 
of material processed by the facility during the year. Therefore, the larger the amount of 
material entering the facility, the higher the cost will be. The variable cost is calculated 
as the product of a coefficient (representing the cost per unit mass) and the mass of waste 
entering the facility. Thus, the installation and maintenance costs of the facility can be 
represented as:

      (2)

The final group consists of recycling costs. These represent a function of different 
types of separation methods, where the selected method represents the best solution for a 
given amount of a specific type of waste. Thus, we obtain 𝑥𝑖,𝑗, where x is the portion of 
waste of the i-th material obtained by applying the j-th method. The idea is to consider 
these proportions as fixed parameters, justifying the fact that, in every case, the most 
economical waste separation method is chosen, which corresponds to the needs of the 
local government (urban structure, socio-economic characteristics of the population, 

Note: 𝑄𝑄𝑖,� –  Quantity of waste of the i-th material that is directly recycled; 𝑄𝑄𝑖,� – Quantity of waste of the i-th material that 
goes to separation; 𝑄𝑄𝑖,�,� – Quantity of waste of the i-th material that goes from separation to recycling (metals, i=8); 𝑄𝑄𝑖,�,� – 
Quantity of waste of the i-th material that goes from separation to treatment; 𝑄𝑄𝑖,�,Т,���– Quantity of waste of the i-th 
material from treatment representing stabilized organic material (SOM); 𝑄𝑄𝑖,�,Т,����𝑒  – Quantity of waste of the i-th material 
from treatment representing waste; 𝑄𝑄𝑖,�,Т,��� �� ���𝑒𝑟𝑖���– Quantity of waste of the i-th material that does not go to treatment 
from separation due to being dry material and directly goes to either the incinerator, landfill, or fuel production. 

Source: Authors 

The decision variables related to separation would be: 𝜓𝜓ₛᵖ, 𝜓𝜓ᵣᵩ, 𝜓𝜓ᵢⁿ, 𝜓𝜓ₗᵐ, and 𝜓𝜓ᵗₗ. 
Similarly, variables for landfills, fuel production, waste treatment, and incineration would be defined. Binary 
variables would refer to all these facilities to describe whether they exist or not, and they would be coded as 1 for 
existence and 0 for non-existence. Thus, we get: Sp – indicator for the p-th separator (p = 1…P), Rq – indicator 
for the q-th fuel production facility (q = 1…Q),  
In – indicator for the n-th incinerator (n = 1…N), Lm – indicator for the m-th landfill (m = 1…M), Tl – indicator 
for the l-th organic waste treatment facility (l = 1…L). 

Considering the described solid waste treatment process, as well as all the listed constraints, the cost function 
encompasses all costs, from collection costs, placement, and procurement of various types of containers, to waste 
recycling. For example, transportation costs represent a function of the number of vehicles (maintenance and fuel 
costs), employee wages (which depend on the number of trips required for waste transport and the number of trips 
one driver can make during their working day), and variable costs determined by the distance between different 
facilities and waste collection points. Therefore, transportation costs can be represented as follows: 

𝐶𝐶т = � 𝑄��,�𝐶�,�
𝑉�,�

(�,�)∈�

 (1) 

The following symbols represent: 

X - Set of possible connections between two facilities 

s,d - Connection between two facilities 

𝐶𝐶�,�  - Transportation costs between facilities 

𝑄𝑄��,� - Quantity (volume) of waste transported between facilities on an annual basis 

𝑉𝑉�,�  - Capacity of a single vehicle for waste transportation used on the route between two facilities 

The second group of costs consists of installation and maintenance costs of the facilities. These costs include a 
fixed component 𝐶𝐶𝐶𝐶 and a variable component 𝐶𝐶𝑉𝑉. The fixed cost depends on the decision of whether the facility 
is included in the system or not and is incorporated into the cost function. This is an integer decision. For example, 
a decision of 1 means that the facility is used and the fixed cost is included in the cost function. If the decision is 
0, the facility is not included and the fixed cost does not contribute to the total cost function. This represents a 
cost proportional to the amount of material processed by the facility during the year. Therefore, the larger the 
amount of material entering the facility, the higher the cost will be. The variable cost is calculated as the product 
of a coefficient (representing the cost per unit mass) and the mass of waste entering the facility. Thus, the 
installation and maintenance costs of the facility can be represented as: 
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The final group consists of recycling costs. These represent a function of different types of separation methods, 
where the selected method represents the best solution for a given amount of a specific type of waste. Thus, we 
obtain 𝑥𝑥𝑝𝑝,𝑗𝑗, where x is the portion of waste of the i-th material obtained by applying the j-th method. The idea is 
to consider these proportions as fixed parameters, justifying the fact that, in every case, the most economical waste 
separation method is chosen, which corresponds to the needs of the local government (urban structure, socio-
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etc.). Thus, the recycling costs on an annual basis can be represented as:

       (3)

The following variables represent:
CR - the cost per unit weight of waste per day
Bi - the economic benefit from the sale of the i-th material in the amount of 𝑟𝑖𝛼𝑖
n - the average number of ’ days
j - ranges from 1 to 4, as there are 4 types of recycling techniques

Given that there are economic benefits from recycling, both in terms of revenue 
generated from the sale of recycled materials and from the sale of thermal and other 
energy, the objective function must incorporate a utility function before the cost functions. 
Taking into account all potential economic benefits from waste treatment, the function 
would look as follows:

       (4)

Where the following represent:

            (5)

Ce - unit price [E/kWh] for energy sales;
Ec,n - annual energy consumption [kWh/year] for the n-th incineration unit;
ŋE - efficiency related to energy production in relation to the heat generated by 

combustion;

f - conversion factor, equal to 3.6 MJ/kWh;

HVln - total daily thermal energy of waste entering the n-th incineration unit.

Considering the above, we obtain the following objective function:

      (6)

Since regulations dictate that certain types of waste cannot be collected together and 
that specific methods must be applied in their treatment, constraints regarding the waste 
structure (compliance with mass balance equations), space size, etc., such constraints are 
described as regulatory constraints. Mathematically, they can be represented as follows, 
with Z representing the percentage corresponding to the prescribed minimum amount of 
waste that must be recycled, according to the law in the Republic of Serbia.
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𝑛𝑛� - the average number of’ days 
ј - ranges from 1 to 4, as there are 4 types of recycling techniques 

 

Given that there are economic benefits from recycling, both in terms of revenue generated from the sale of 
recycled materials and from the sale of thermal and other energy, the objective function must incorporate a utility 
function before the cost functions. Taking into account all potential economic benefits from waste treatment, the 
function would look as follows: 

𝐵𝐵 = � 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑒𝑐.���𝑅𝑅𝑅𝑅�
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Where the following represent: 
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�̃�𝑝𝑒 - unit price [E/kWh] for energy sales; 
𝐸𝐸𝑐,𝑛 - annual energy consumption [kWh/year] for the n-th incineration unit; 

𝜂𝜂𝐸  - efficiency related to energy production in relation to the heat generated by combustion; 

𝑓𝑓 - conversion factor, equal to 3.6 MJ/kWh; 
𝐻𝐻𝐻𝐻�𝑛 - total daily thermal energy of waste entering the n-th incineration unit. 

 

Considering the above, we obtain the following objective function: 

𝐶𝐶 =  𝐶𝐶� + 𝐶𝐶� + 𝐶𝐶𝑅 − 𝐵𝐵 (6) 

Since regulations dictate that certain types of waste cannot be collected together and that specific methods must 
be applied in their treatment, constraints regarding the waste structure (compliance with mass balance equations), 
space size, etc., such constraints are described as regulatory constraints. Mathematically, they can be represented 
as follows, with Z representing the percentage corresponding to the prescribed minimum amount of waste that 
must be recycled, according to the law in the Republic of Serbia. 
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The following symbols represent:

ki  - the fraction of material i that is sent for recycling after separation;
ŋi  - the fraction of material i, relative to the total material not recycled after 

separation, that is sent (as wet material) for biological treatment;
 ŋi  - a parameter representing the fraction of material i that enters the biological 

treatment facility and remains in the stabilized organic material; note that the 
dependence of this fraction depends on index i because cleaning operations to 
remove residues take place in the biological treatment plant, with an efficiency 
that also depends on index i;

 ŋi  - the fraction of material i that enters the RDF (Refuse Derived Fuel) facility and 
remains as a component of the RDF produced in that facility; again, this fraction 
depends on index i.

The second group of constraints consists of technical constraints. These are 
typically limitations related to the amounts of material that can be received, delivery 
times, raw material quality, and ecological and safety standards that must be adhered to. 
In solid waste management, such constraints apply to the daily intake of material into 
incinerators, separators, organic material treatment plants, and fuel production plants. 
More specifically, the amounts of waste entering these facilities must lie between certain 
fixed values, which can be mathematically represented as follows:

     (8)
     (9)
     (10)
     (11)

In addition to this constraint, the model also includes a constraint related to the 
conservation of mass. This constraint can be represented by an equation that ensures 
the mass of material entering the system is equal to the mass of material leaving the 
system, plus the mass retained within the system, or mathematically, F_{\text{in}} - 
F_{\text{out}} = \Delta mass. This constraint occurs at every branching point where the 
waste flow can be split. Regardless of the branching point, the general constraint can be 
expressed as the difference between the flow of material entering and exiting the facility 
being equal to the change in mass within the system over a specific time period.

Since the treatment of solid waste involves the presence of certain facilities 
when a specific type of solid waste is present, the decision regarding their presence or 
absence must also be included in the model. The constraint is that when the amount of a 

economic characteristics of the population, etc.). Thus, the recycling costs on an annual basis can be represented 
as: 
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The following variables represent: 
𝐶𝐶𝑟 - the cost per unit weight of waste per day 
𝐵𝐵𝑖  - the economic benefit from the sale of the i-th material in the amount of 𝑟𝑟𝑟𝑟𝛼𝛼𝑟𝑟 
𝑛𝑛� - the average number of’ days 
ј - ranges from 1 to 4, as there are 4 types of recycling techniques 

 

Given that there are economic benefits from recycling, both in terms of revenue generated from the sale of 
recycled materials and from the sale of thermal and other energy, the objective function must incorporate a utility 
function before the cost functions. Taking into account all potential economic benefits from waste treatment, the 
function would look as follows: 
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Where the following represent: 
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�̃�𝑝𝑒 - unit price [E/kWh] for energy sales; 
𝐸𝐸𝑐,𝑛 - annual energy consumption [kWh/year] for the n-th incineration unit; 

𝜂𝜂𝐸  - efficiency related to energy production in relation to the heat generated by combustion; 

𝑓𝑓 - conversion factor, equal to 3.6 MJ/kWh; 
𝐻𝐻𝐻𝐻�𝑛 - total daily thermal energy of waste entering the n-th incineration unit. 

 

Considering the above, we obtain the following objective function: 

𝐶𝐶 =  𝐶𝐶� + 𝐶𝐶� + 𝐶𝐶𝑅 − 𝐵𝐵 (6) 

Since regulations dictate that certain types of waste cannot be collected together and that specific methods must 
be applied in their treatment, constraints regarding the waste structure (compliance with mass balance equations), 
space size, etc., such constraints are described as regulatory constraints. Mathematically, they can be represented 
as follows, with Z representing the percentage corresponding to the prescribed minimum amount of waste that 
must be recycled, according to the law in the Republic of Serbia. 
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The following symbols represent: 

𝑘𝑘� – the fraction of material i that is sent for recycling after separation; 
𝜂𝜂� – the fraction of material i, relative to the total material not recycled after separation, that is sent (as wet 

material) for biological treatment; 
𝜂𝜂��  – a parameter representing the fraction of material i that enters the biological treatment facility and 

remains in the stabilized organic material; note that the dependence of this fraction depends on index i 
because cleaning operations to remove residues take place in the biological treatment plant, with an 
efficiency that also depends on index i; 

�̂�𝜂� – the fraction of material i that enters the RDF (Refuse Derived Fuel) facility and remains as a component 
of the RDF produced in that facility; again, this fraction depends on index i. 

The second group of constraints consists of technical constraints. These are typically limitations related to the 
amounts of material that can be received, delivery times, raw material quality, and ecological and safety standards 
that must be adhered to. In solid waste management, such constraints apply to the daily intake of material into 
incinerators, separators, organic material treatment plants, and fuel production plants. More specifically, the 
amounts of waste entering these facilities must lie between certain fixed values, which can be mathematically 
represented as follows: 

М��,�𝛿𝛿�� ≤ 𝑄𝑄�� ≤ М𝑆�,�𝛿𝛿��  (8) 
М𝑆�,�𝛿𝛿�� ≤ 𝑄𝑄𝑆� ≤ М𝑆�,�𝛿𝛿𝑆�   (9) 

М𝐶�,,�𝛿𝛿𝐶� ≤ 𝑄𝑄𝐶� ≤ М𝐶�,�𝛿𝛿𝐶�  (10) 
МТ�,,�𝛿𝛿�� ≤ 𝑄𝑄𝐶� ≤ МТ�,�𝛿𝛿��  (11) 

In addition to this constraint, the model also includes a constraint related to the conservation of mass. This 
constraint can be represented by an equation that ensures the mass of material entering the system is equal to the 
mass of material leaving the system, plus the mass retained within the system, or mathematically, F_{\text{in}} 
- F_{\text{out}} = \Delta mass. This constraint occurs at every branching point where the waste flow can be split. 
Regardless of the branching point, the general constraint can be expressed as the difference between the flow of 
material entering and exiting the facility being equal to the change in mass within the system over a specific time 
period. 

Since the treatment of solid waste involves the presence of certain facilities when a specific type of solid waste is 
present, the decision regarding their presence or absence must also be included in the model. The constraint is 
that when the amount of a specific type of waste is greater than zero, the corresponding facility must be present, 
or mathematically: P = \text{sgn}(F_{\text{in}}). 

The third group of constraints pertains to environmental standards. In the context of solid waste management, 
they relate to the chemical content of fuel and SOM (stabilized organic material). In the case of fuel production, 
these constraints address the chemical characteristics of the fuel in order to minimize ash, Cl, S, moisture, as well 
as its calorific value, which can be mathematically represented by the following constraint: 
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Where Ai is defined by specific constraints related to heat, Cl and S concentration, moisture, and ash content. 
Similarly, the constraint related to SOM (Stabilized Organic Material) is defined, concerning the concentration of 
plastics, pH values, and emissions of unpleasant odors. 
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Given that K and H are constants, hi refers to the moisture content in material i-th after stabilization. 
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specific type of waste is greater than zero, the corresponding facility must be present, or 
mathematically: P = \text{sgn}(F_{\text{in}}).

The third group of constraints pertains to environmental standards. In the context of 
solid waste management, they relate to the chemical content of fuel and SOM (stabilized 
organic material). In the case of fuel production, these constraints address the chemical 
characteristics of the fuel in order to minimize ash, Cl, S, moisture, as well as its calorific 
value, which can be mathematically represented by the following constraint:

         (12)

Where Ai is defined by specific constraints related to heat, Cl and S concentration, 
moisture, and ash content. Similarly, the constraint related to SOM (Stabilized Organic 
Material) is defined, concerning the concentration of plastics, pH values, and emissions 
of unpleasant odors.

         (13)

Given that K and H are constants, hi refers to the moisture content in material i-th 
after stabilization.

The emission limits from the incinerator related to sulfur oxides, hydrochloric 
acid, nitrogen oxides, heavy metals, and dust are given by the following expressions: 
[E_{\text{SOx}} \leq C_{\text{SOx}}^{\max} ] Where (E_{\text{SOx}})  represents 
the total sulfur dioxide emissions from the facility, and (C_{\text{SOx}}^{\max}) is 
the maximum allowed concentration of SOx in the flue gas; [ E_{\text{HCl}} \leq C_{\
text{HCl}}^{\max} ] In which (E_{\text{HCl}}) represents the total emission of HCl, 
and (C_{\text{HCl}}^{\max}) is the maximum permitted concentration of HCl: [ E_{\
text{HF}} \leq C_{\text{HF}}^{\max} ] In which (E_{\text{HF}}) represents the total 
emission of HF, and (C_{\text{HF}}^{\max}) is the maximum permitted concentration 
of HF; [ E_{\text{NOx}} \leq C_{\text{NOx}}^{\max} ] In whch (E_{\text{NOx}}) 
represents the total emission of nitrogen oxides, and (C_{\text{NOx}}^{\max}) is  
the maximum permitted concentration of Nox; [ E_{\text{heavy\ metals}} \leq C_{\
text{heavy\ metals}}^{\max} ] In which (E_{\text{heavy\ metals}}) represents the total 
emission of  heavy metals, and (C_{\text{heavy\ metals}}^{\max}) is the maximum 
permitted concentration of heavy metals; [ E_{\text{dust}} \leq C_{\text{dust}}^{\max} 
] in which (E_{\text{dust}}) represents the total dust emission, and (C_{\text{dust}}^{\
max}) is the maximum permitted dust concentration.

Since sanitary landfills are not environmentally sustainable over a long period, 
the model must include a limitation on their saturation. Since such a limitation can be 
expressed in terms of the minimum filling time, this constraint can be mathematically 
written as follows:                                                                                             where VLm is 
the amount of waste that saturates the landfill, and TLm is the time it takes for the landfill 
to reach saturation.

The following symbols represent: 

𝑘𝑘� – the fraction of material i that is sent for recycling after separation; 
𝜂𝜂� – the fraction of material i, relative to the total material not recycled after separation, that is sent (as wet 

material) for biological treatment; 
𝜂𝜂��  – a parameter representing the fraction of material i that enters the biological treatment facility and 

remains in the stabilized organic material; note that the dependence of this fraction depends on index i 
because cleaning operations to remove residues take place in the biological treatment plant, with an 
efficiency that also depends on index i; 

�̂�𝜂� – the fraction of material i that enters the RDF (Refuse Derived Fuel) facility and remains as a component 
of the RDF produced in that facility; again, this fraction depends on index i. 

The second group of constraints consists of technical constraints. These are typically limitations related to the 
amounts of material that can be received, delivery times, raw material quality, and ecological and safety standards 
that must be adhered to. In solid waste management, such constraints apply to the daily intake of material into 
incinerators, separators, organic material treatment plants, and fuel production plants. More specifically, the 
amounts of waste entering these facilities must lie between certain fixed values, which can be mathematically 
represented as follows: 

М��,�𝛿𝛿�� ≤ 𝑄𝑄�� ≤ М𝑆�,�𝛿𝛿��  (8) 
М𝑆�,�𝛿𝛿�� ≤ 𝑄𝑄𝑆� ≤ М𝑆�,�𝛿𝛿𝑆�   (9) 

М𝐶�,,�𝛿𝛿𝐶� ≤ 𝑄𝑄𝐶� ≤ М𝐶�,�𝛿𝛿𝐶�  (10) 
МТ�,,�𝛿𝛿�� ≤ 𝑄𝑄𝐶� ≤ МТ�,�𝛿𝛿��  (11) 

In addition to this constraint, the model also includes a constraint related to the conservation of mass. This 
constraint can be represented by an equation that ensures the mass of material entering the system is equal to the 
mass of material leaving the system, plus the mass retained within the system, or mathematically, F_{\text{in}} 
- F_{\text{out}} = \Delta mass. This constraint occurs at every branching point where the waste flow can be split. 
Regardless of the branching point, the general constraint can be expressed as the difference between the flow of 
material entering and exiting the facility being equal to the change in mass within the system over a specific time 
period. 

Since the treatment of solid waste involves the presence of certain facilities when a specific type of solid waste is 
present, the decision regarding their presence or absence must also be included in the model. The constraint is 
that when the amount of a specific type of waste is greater than zero, the corresponding facility must be present, 
or mathematically: P = \text{sgn}(F_{\text{in}}). 

The third group of constraints pertains to environmental standards. In the context of solid waste management, 
they relate to the chemical content of fuel and SOM (stabilized organic material). In the case of fuel production, 
these constraints address the chemical characteristics of the fuel in order to minimize ash, Cl, S, moisture, as well 
as its calorific value, which can be mathematically represented by the following constraint: 
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Where Ai is defined by specific constraints related to heat, Cl and S concentration, moisture, and ash content. 
Similarly, the constraint related to SOM (Stabilized Organic Material) is defined, concerning the concentration of 
plastics, pH values, and emissions of unpleasant odors. 
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Given that K and H are constants, hi refers to the moisture content in material i-th after stabilization. 

The following symbols represent: 

𝑘𝑘� – the fraction of material i that is sent for recycling after separation; 
𝜂𝜂� – the fraction of material i, relative to the total material not recycled after separation, that is sent (as wet 

material) for biological treatment; 
𝜂𝜂��  – a parameter representing the fraction of material i that enters the biological treatment facility and 

remains in the stabilized organic material; note that the dependence of this fraction depends on index i 
because cleaning operations to remove residues take place in the biological treatment plant, with an 
efficiency that also depends on index i; 

�̂�𝜂� – the fraction of material i that enters the RDF (Refuse Derived Fuel) facility and remains as a component 
of the RDF produced in that facility; again, this fraction depends on index i. 

The second group of constraints consists of technical constraints. These are typically limitations related to the 
amounts of material that can be received, delivery times, raw material quality, and ecological and safety standards 
that must be adhered to. In solid waste management, such constraints apply to the daily intake of material into 
incinerators, separators, organic material treatment plants, and fuel production plants. More specifically, the 
amounts of waste entering these facilities must lie between certain fixed values, which can be mathematically 
represented as follows: 

М��,�𝛿𝛿�� ≤ 𝑄𝑄�� ≤ М𝑆�,�𝛿𝛿��  (8) 
М𝑆�,�𝛿𝛿�� ≤ 𝑄𝑄𝑆� ≤ М𝑆�,�𝛿𝛿𝑆�   (9) 

М𝐶�,,�𝛿𝛿𝐶� ≤ 𝑄𝑄𝐶� ≤ М𝐶�,�𝛿𝛿𝐶�  (10) 
МТ�,,�𝛿𝛿�� ≤ 𝑄𝑄𝐶� ≤ МТ�,�𝛿𝛿��  (11) 

In addition to this constraint, the model also includes a constraint related to the conservation of mass. This 
constraint can be represented by an equation that ensures the mass of material entering the system is equal to the 
mass of material leaving the system, plus the mass retained within the system, or mathematically, F_{\text{in}} 
- F_{\text{out}} = \Delta mass. This constraint occurs at every branching point where the waste flow can be split. 
Regardless of the branching point, the general constraint can be expressed as the difference between the flow of 
material entering and exiting the facility being equal to the change in mass within the system over a specific time 
period. 

Since the treatment of solid waste involves the presence of certain facilities when a specific type of solid waste is 
present, the decision regarding their presence or absence must also be included in the model. The constraint is 
that when the amount of a specific type of waste is greater than zero, the corresponding facility must be present, 
or mathematically: P = \text{sgn}(F_{\text{in}}). 

The third group of constraints pertains to environmental standards. In the context of solid waste management, 
they relate to the chemical content of fuel and SOM (stabilized organic material). In the case of fuel production, 
these constraints address the chemical characteristics of the fuel in order to minimize ash, Cl, S, moisture, as well 
as its calorific value, which can be mathematically represented by the following constraint: 

� � � 𝑘𝑘�(1 − 𝛼𝛼�)𝑟𝑟�𝜒𝜒
11

��1

𝑃𝑃�,�  Φ𝑃𝑃�,𝑆𝑆�(1 − 𝑘𝑘�) × (1 − 𝜂𝜂�)𝜓𝜓𝑆𝑆�,𝐶𝐶�(−�̂�𝜂�)А� ≥ 0 (12) 
�

��1

𝑃

��1

 

Where Ai is defined by specific constraints related to heat, Cl and S concentration, moisture, and ash content. 
Similarly, the constraint related to SOM (Stabilized Organic Material) is defined, concerning the concentration of 
plastics, pH values, and emissions of unpleasant odors. 

�� Φ𝑃𝑃�,𝑆𝑆� 𝛽𝛽𝑆�,�� 𝐾𝐾
�

��1

� − 𝐻𝐻 �� � �(1 − 𝛼𝛼�)𝑟𝑟�
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�

��1

𝑃

��1

Φ𝑃𝑃�,𝑆𝑆� (1 − 𝑘𝑘�)𝜂𝜂�𝛽𝛽𝑆�,�� �̂�𝜂�(1 − ℎ�)� ≤  0 (13) 

Given that K and H are constants, hi refers to the moisture content in material i-th after stabilization. 

The emission limits from the incinerator related to sulfur oxides, hydrochloric acid, nitrogen oxides, heavy metals, 
and dust are given by the following expressions: [E_{\text{SOx}} \leq C_{\text{SOx}}^{\max} ] Where 
(E_{\text{SOx}})  represents the total sulfur dioxide emissions from the facility, and (C_{\text{SOx}}^{\max}) 
is the maximum allowed concentration of SOx in the flue gas; [ E_{\text{HCl}} \leq C_{\text{HCl}}^{\max} ] 
In which (E_{\text{HCl}}) represents the total emission of HCl, and (C_{\text{HCl}}^{\max}) is the maximum 
permitted concentration of HCl: [ E_{\text{HF}} \leq C_{\text{HF}}^{\max} ] In which (E_{\text{HF}}) 
represents the total emission of HF, and (C_{\text{HF}}^{\max}) is the maximum permitted concentration of 
HF; [ E_{\text{NOx}} \leq C_{\text{NOx}}^{\max} ] In whch (E_{\text{NOx}}) represents the total emission 
of nitrogen oxides, and (C_{\text{NOx}}^{\max}) is  the maximum permitted concentration of Nox; [ 
E_{\text{heavy\ metals}} \leq C_{\text{heavy\ metals}}^{\max} ] In which (E_{\text{heavy\ metals}}) 
represents the total emission of  heavy metals, and (C_{\text{heavy\ metals}}^{\max}) is the maximum permitted 
concentration of heavy metals; [ E_{\text{dust}} \leq C_{\text{dust}}^{\max} ] in which (E_{\text{dust}}) 
represents the total dust emission, and (C_{\text{dust}}^{\max}) is the maximum permitted dust concentration. 

Since sanitary landfills are not environmentally sustainable over a long period, the model must include a limitation 
on their saturation. Since such a limitation can be expressed in terms of the minimum filling time, this constraint 
can be mathematically written as follows:        ̂ 𝑄𝑄���,��+𝑄𝑄���,��+𝑄𝑄���,�� + 𝑄𝑄����,��+𝑄𝑄�𝑇�,��+𝑄𝑄���,�� ≤ 𝑉��

𝑇��
,   where 

𝑉𝑉�� is the amount of waste that saturates the landfill, and 𝑇𝑇�� is the time it takes for the landfill to reach saturation. 

4. Conclusion 

The developed model in this paper represents an efficient decision support system (DSS) for improving the 
operations of public utility companies in the Republic of Serbia. It is essential for optimizing municipal waste 
management, as well as for integrating recycling and waste disposal. The model is developed based on the 
formalization of a constrained nonlinear optimization problem, where some decision variables are binary, while 
others are continuous. The objective function encompasses all potential economic costs, while the constraints are 
based on technical, regulatory, and environmental aspects. In general, this approach allows for the exploration of 
various aspects that are important for planning a municipal waste management system. Special emphasis is placed 
on the precise characterization of the system in terms of the chemical composition of waste, calorific value, 
material recovery, and available treatment methods. Attention is also given to environmental impacts. 

However, like any model, this one also has several shortcomings. The first drawback concerns the complexity of 
the model. The model contains many variants and functions, including binary and integer variables. This 
complexity may complicate analysis and implementation, as well as require robust software for solving. Although 
it is mentioned that the functions are nonlinear, certain assumptions about linearity in the optimization problem 
may reduce the accuracy of the model. For example, factors such as transportation costs, which may behave 
nonlinearly as a function of distance, may not be accurately modeled. The model must adapt to constantly 
changing laws and regulations, which may make its long-term use difficult. If new laws become stricter 
concerning certain types of waste, the model may not be sufficiently adaptable. Many types of waste are 
interrelated. For example, recycling one material (e.g., plastic) can affect the availability and processing costs of 
another material. This interdependence may not be adequately modeled. The waste treatment process is dynamic, 
with seasonal variations in the quantity and type of waste. The model may fail to capture the timing of these 
variations and may not easily adjust to changes or events. Additionally, the market for recycled materials and 
energy can be unstable and subject to fluctuations. This can affect the profitability of the solutions proposed in 
the model and significantly reduce the attractiveness of certain waste treatment methods. 

In summary, while the proposed model offers a comprehensive approach to solid waste management, considering 
various relevant aspects, it possesses several limitations that could impact its effectiveness and practical 
implementation. It is recommended that further verification and sensitivity analysis be conducted, and that the 
model be integrated with empirical data and practical experience to enhance its applicability and contribute more 
effectively to addressing the challenges of waste management. 
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Conclusion

The developed model in this paper represents an efficient decision support system 
(DSS) for improving the operations of public utility companies in the Republic of Serbia. 
It is essential for optimizing municipal waste management, as well as for integrating 
recycling and waste disposal. The model is developed based on the formalization of a 
constrained nonlinear optimization problem, where some decision variables are binary, 
while others are continuous. The objective function encompasses all potential economic 
costs, while the constraints are based on technical, regulatory, and environmental aspects. 
In general, this approach allows for the exploration of various aspects that are important 
for planning a municipal waste management system. Special emphasis is placed on the 
precise characterization of the system in terms of the chemical composition of waste, 
calorific value, material recovery, and available treatment methods. Attention is also 
given to environmental impacts.

However, like any model, this one also has several shortcomings. The first 
drawback concerns the complexity of the model. The model contains many variants 
and functions, including binary and integer variables. This complexity may complicate 
analysis and implementation, as well as require robust software for solving. Although 
it is mentioned that the functions are nonlinear, certain assumptions about linearity in 
the optimization problem may reduce the accuracy of the model. For example, factors 
such as transportation costs, which may behave nonlinearly as a function of distance, 
may not be accurately modeled. The model must adapt to constantly changing laws and 
regulations, which may make its long-term use difficult. If new laws become stricter 
concerning certain types of waste, the model may not be sufficiently adaptable. Many 
types of waste are interrelated. For example, recycling one material (e.g., plastic) can 
affect the availability and processing costs of another material. This interdependence 
may not be adequately modeled. The waste treatment process is dynamic, with seasonal 
variations in the quantity and type of waste. The model may fail to capture the timing of 
these variations and may not easily adjust to changes or events. Additionally, the market 
for recycled materials and energy can be unstable and subject to fluctuations. This can 
affect the profitability of the solutions proposed in the model and significantly reduce the 
attractiveness of certain waste treatment methods.

In summary, while the proposed model offers a comprehensive approach to solid 
waste management, considering various relevant aspects, it possesses several limitations 
that could impact its effectiveness and practical implementation. It is recommended 
that further verification and sensitivity analysis be conducted, and that the model be 
integrated with empirical data and practical experience to enhance its applicability and 
contribute more effectively to addressing the challenges of waste management.
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Apendix

• For the purposes of this work, the limits are set to the following values; 
• (g \cdot HVi - 3600 \text{ kcal/kg}), where are:

o (HVi): Heating value for (i) type of material in MJ/kg.
o (g): The conversion factor used to convert MJ into kcal, given as (238.9 

\text{ kcal/MJ}).
o Thus, the limitation is imposed that the heating value for a given material 

must be above (3600 \text{ kcal/kg}).

2. Restriction regarding chloride content (Cli)
• Another limitation refers to the chloride content in the produced RDF, which 

must be less than (0.9%). 
o (0.009 - Cli): This expression ensures that the chlorophytic content for 

the (i)th type of material is less than (0.009) (or (0.9%)).

3. Sulfur (Si) content limit
• The third limitation refers to the sulfur content:

o (0.006 - Si): As with chlorine, this limit ensures that the sulfur content of 
the RDF is less than (0.6%) ( (0.006)).

4. Ash content limitation (Ashi)
• The fourth limitation refers to the ash content:

o (0.002 - Ashi): This limit ensures that the ash content of RDF is less than 
(0.2%)




